Elucidating the Volcanic-Type Catalytic Behavior in Lithium–Sulfur Batteries via Defect Engineering
Defects are generally considered to be effective and flexible in the catalytic reactions of lithium–sulfur batteries. However, the influence of the defect concentration on catalysis remains ambiguous. In this work, molybdenum sulfide with different sulfur vacancy concentrations is comprehensively mo...
Gespeichert in:
Veröffentlicht in: | ACS nano 2023-09, Vol.17 (18), p.18253-18265 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18265 |
---|---|
container_issue | 18 |
container_start_page | 18253 |
container_title | ACS nano |
container_volume | 17 |
creator | Guo, Yan Li, Jing Yuan, Gaoqian Guo, Junpo Zheng, Yun Huang, Yike Zhang, Qi Li, Jielei Shen, Jingjun Shu, Chenhao Xu, Jincheng Tang, Yuxin Lei, Wen Shao, Huaiyu |
description | Defects are generally considered to be effective and flexible in the catalytic reactions of lithium–sulfur batteries. However, the influence of the defect concentration on catalysis remains ambiguous. In this work, molybdenum sulfide with different sulfur vacancy concentrations is comprehensively modulated, showing that the defect level and the adsorption-catalytic performance result in a volcano relationship. Moreover, density functional theory and in situ experiments reveal that the optimal level of sulfur defects can effectively increase the binding energy between molybdenum sulfide and lithium polysulfides (LiPSs), lower the energy barrier of the LiPS conversion reaction, and promote the kinetics of Li2S bidirectional catalytic reaction. The lower bidirectional catalytic performance incited by excessive or deficient sulfur defects is mainly due to the deformed geometrical structures and reduced adsorption of key LiPSs on the catalyst surface. This work underscores the imperative of controlling the defect content and provides a potential approach to the commercialization of lithium–sulfur batteries. |
doi_str_mv | 10.1021/acsnano.3c05269 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2861644271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861644271</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-4003cd6043bbdfb28ec8e44e2da33587b75966f75170989ea0a4b9f11eedf3ab3</originalsourceid><addsrcrecordid>eNp1kL9OwzAQhy0EEqUws3pEQmntOHGSEUr5I1VioCC26OKcW1epU2ynUjfegTfkSQhqxcZ0p7vvd9J9hFxyNuIs5mNQ3oJtR0KxNJbFERnwQsiI5fL9-K9P-Sk5837FWJrlmRwQnDadMjUEYxc0LJG-tY0Ca1Q0322QTiBAswtG0Vtcwta0jhpLZyYsTbf-_vx66RrdOXoLIaAz6OnWAL1DjSrQqV0Yi_3YLs7JiYbG48WhDsnr_XQ-eYxmzw9Pk5tZBIKzECWMCVVLloiqqnUV56hyTBKMaxAizbMqSwspdZbyjBV5gcAgqQrNOWKtBVRiSK72dzeu_ejQh3JtvMKmAYtt58s4l1wmSZzxHh3vUeVa7x3qcuPMGtyu5Kz8FVoehJYHoX3iep_oF-Wq7ZztX_mX_gHKr3ux</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861644271</pqid></control><display><type>article</type><title>Elucidating the Volcanic-Type Catalytic Behavior in Lithium–Sulfur Batteries via Defect Engineering</title><source>American Chemical Society Journals</source><creator>Guo, Yan ; Li, Jing ; Yuan, Gaoqian ; Guo, Junpo ; Zheng, Yun ; Huang, Yike ; Zhang, Qi ; Li, Jielei ; Shen, Jingjun ; Shu, Chenhao ; Xu, Jincheng ; Tang, Yuxin ; Lei, Wen ; Shao, Huaiyu</creator><creatorcontrib>Guo, Yan ; Li, Jing ; Yuan, Gaoqian ; Guo, Junpo ; Zheng, Yun ; Huang, Yike ; Zhang, Qi ; Li, Jielei ; Shen, Jingjun ; Shu, Chenhao ; Xu, Jincheng ; Tang, Yuxin ; Lei, Wen ; Shao, Huaiyu</creatorcontrib><description>Defects are generally considered to be effective and flexible in the catalytic reactions of lithium–sulfur batteries. However, the influence of the defect concentration on catalysis remains ambiguous. In this work, molybdenum sulfide with different sulfur vacancy concentrations is comprehensively modulated, showing that the defect level and the adsorption-catalytic performance result in a volcano relationship. Moreover, density functional theory and in situ experiments reveal that the optimal level of sulfur defects can effectively increase the binding energy between molybdenum sulfide and lithium polysulfides (LiPSs), lower the energy barrier of the LiPS conversion reaction, and promote the kinetics of Li2S bidirectional catalytic reaction. The lower bidirectional catalytic performance incited by excessive or deficient sulfur defects is mainly due to the deformed geometrical structures and reduced adsorption of key LiPSs on the catalyst surface. This work underscores the imperative of controlling the defect content and provides a potential approach to the commercialization of lithium–sulfur batteries.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c05269</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2023-09, Vol.17 (18), p.18253-18265</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a310t-4003cd6043bbdfb28ec8e44e2da33587b75966f75170989ea0a4b9f11eedf3ab3</citedby><cites>FETCH-LOGICAL-a310t-4003cd6043bbdfb28ec8e44e2da33587b75966f75170989ea0a4b9f11eedf3ab3</cites><orcidid>0000-0003-3069-5299 ; 0000-0001-9286-7071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.3c05269$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.3c05269$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Yuan, Gaoqian</creatorcontrib><creatorcontrib>Guo, Junpo</creatorcontrib><creatorcontrib>Zheng, Yun</creatorcontrib><creatorcontrib>Huang, Yike</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Li, Jielei</creatorcontrib><creatorcontrib>Shen, Jingjun</creatorcontrib><creatorcontrib>Shu, Chenhao</creatorcontrib><creatorcontrib>Xu, Jincheng</creatorcontrib><creatorcontrib>Tang, Yuxin</creatorcontrib><creatorcontrib>Lei, Wen</creatorcontrib><creatorcontrib>Shao, Huaiyu</creatorcontrib><title>Elucidating the Volcanic-Type Catalytic Behavior in Lithium–Sulfur Batteries via Defect Engineering</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Defects are generally considered to be effective and flexible in the catalytic reactions of lithium–sulfur batteries. However, the influence of the defect concentration on catalysis remains ambiguous. In this work, molybdenum sulfide with different sulfur vacancy concentrations is comprehensively modulated, showing that the defect level and the adsorption-catalytic performance result in a volcano relationship. Moreover, density functional theory and in situ experiments reveal that the optimal level of sulfur defects can effectively increase the binding energy between molybdenum sulfide and lithium polysulfides (LiPSs), lower the energy barrier of the LiPS conversion reaction, and promote the kinetics of Li2S bidirectional catalytic reaction. The lower bidirectional catalytic performance incited by excessive or deficient sulfur defects is mainly due to the deformed geometrical structures and reduced adsorption of key LiPSs on the catalyst surface. This work underscores the imperative of controlling the defect content and provides a potential approach to the commercialization of lithium–sulfur batteries.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQhy0EEqUws3pEQmntOHGSEUr5I1VioCC26OKcW1epU2ynUjfegTfkSQhqxcZ0p7vvd9J9hFxyNuIs5mNQ3oJtR0KxNJbFERnwQsiI5fL9-K9P-Sk5837FWJrlmRwQnDadMjUEYxc0LJG-tY0Ca1Q0322QTiBAswtG0Vtcwta0jhpLZyYsTbf-_vx66RrdOXoLIaAz6OnWAL1DjSrQqV0Yi_3YLs7JiYbG48WhDsnr_XQ-eYxmzw9Pk5tZBIKzECWMCVVLloiqqnUV56hyTBKMaxAizbMqSwspdZbyjBV5gcAgqQrNOWKtBVRiSK72dzeu_ejQh3JtvMKmAYtt58s4l1wmSZzxHh3vUeVa7x3qcuPMGtyu5Kz8FVoehJYHoX3iep_oF-Wq7ZztX_mX_gHKr3ux</recordid><startdate>20230926</startdate><enddate>20230926</enddate><creator>Guo, Yan</creator><creator>Li, Jing</creator><creator>Yuan, Gaoqian</creator><creator>Guo, Junpo</creator><creator>Zheng, Yun</creator><creator>Huang, Yike</creator><creator>Zhang, Qi</creator><creator>Li, Jielei</creator><creator>Shen, Jingjun</creator><creator>Shu, Chenhao</creator><creator>Xu, Jincheng</creator><creator>Tang, Yuxin</creator><creator>Lei, Wen</creator><creator>Shao, Huaiyu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3069-5299</orcidid><orcidid>https://orcid.org/0000-0001-9286-7071</orcidid></search><sort><creationdate>20230926</creationdate><title>Elucidating the Volcanic-Type Catalytic Behavior in Lithium–Sulfur Batteries via Defect Engineering</title><author>Guo, Yan ; Li, Jing ; Yuan, Gaoqian ; Guo, Junpo ; Zheng, Yun ; Huang, Yike ; Zhang, Qi ; Li, Jielei ; Shen, Jingjun ; Shu, Chenhao ; Xu, Jincheng ; Tang, Yuxin ; Lei, Wen ; Shao, Huaiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-4003cd6043bbdfb28ec8e44e2da33587b75966f75170989ea0a4b9f11eedf3ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Yuan, Gaoqian</creatorcontrib><creatorcontrib>Guo, Junpo</creatorcontrib><creatorcontrib>Zheng, Yun</creatorcontrib><creatorcontrib>Huang, Yike</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Li, Jielei</creatorcontrib><creatorcontrib>Shen, Jingjun</creatorcontrib><creatorcontrib>Shu, Chenhao</creatorcontrib><creatorcontrib>Xu, Jincheng</creatorcontrib><creatorcontrib>Tang, Yuxin</creatorcontrib><creatorcontrib>Lei, Wen</creatorcontrib><creatorcontrib>Shao, Huaiyu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yan</au><au>Li, Jing</au><au>Yuan, Gaoqian</au><au>Guo, Junpo</au><au>Zheng, Yun</au><au>Huang, Yike</au><au>Zhang, Qi</au><au>Li, Jielei</au><au>Shen, Jingjun</au><au>Shu, Chenhao</au><au>Xu, Jincheng</au><au>Tang, Yuxin</au><au>Lei, Wen</au><au>Shao, Huaiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Volcanic-Type Catalytic Behavior in Lithium–Sulfur Batteries via Defect Engineering</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-09-26</date><risdate>2023</risdate><volume>17</volume><issue>18</issue><spage>18253</spage><epage>18265</epage><pages>18253-18265</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Defects are generally considered to be effective and flexible in the catalytic reactions of lithium–sulfur batteries. However, the influence of the defect concentration on catalysis remains ambiguous. In this work, molybdenum sulfide with different sulfur vacancy concentrations is comprehensively modulated, showing that the defect level and the adsorption-catalytic performance result in a volcano relationship. Moreover, density functional theory and in situ experiments reveal that the optimal level of sulfur defects can effectively increase the binding energy between molybdenum sulfide and lithium polysulfides (LiPSs), lower the energy barrier of the LiPS conversion reaction, and promote the kinetics of Li2S bidirectional catalytic reaction. The lower bidirectional catalytic performance incited by excessive or deficient sulfur defects is mainly due to the deformed geometrical structures and reduced adsorption of key LiPSs on the catalyst surface. This work underscores the imperative of controlling the defect content and provides a potential approach to the commercialization of lithium–sulfur batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.3c05269</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3069-5299</orcidid><orcidid>https://orcid.org/0000-0001-9286-7071</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2023-09, Vol.17 (18), p.18253-18265 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2861644271 |
source | American Chemical Society Journals |
title | Elucidating the Volcanic-Type Catalytic Behavior in Lithium–Sulfur Batteries via Defect Engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Volcanic-Type%20Catalytic%20Behavior%20in%20Lithium%E2%80%93Sulfur%20Batteries%20via%20Defect%20Engineering&rft.jtitle=ACS%20nano&rft.au=Guo,%20Yan&rft.date=2023-09-26&rft.volume=17&rft.issue=18&rft.spage=18253&rft.epage=18265&rft.pages=18253-18265&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c05269&rft_dat=%3Cproquest_cross%3E2861644271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861644271&rft_id=info:pmid/&rfr_iscdi=true |