Elucidating the Volcanic-Type Catalytic Behavior in Lithium–Sulfur Batteries via Defect Engineering

Defects are generally considered to be effective and flexible in the catalytic reactions of lithium–sulfur batteries. However, the influence of the defect concentration on catalysis remains ambiguous. In this work, molybdenum sulfide with different sulfur vacancy concentrations is comprehensively mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-09, Vol.17 (18), p.18253-18265
Hauptverfasser: Guo, Yan, Li, Jing, Yuan, Gaoqian, Guo, Junpo, Zheng, Yun, Huang, Yike, Zhang, Qi, Li, Jielei, Shen, Jingjun, Shu, Chenhao, Xu, Jincheng, Tang, Yuxin, Lei, Wen, Shao, Huaiyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18265
container_issue 18
container_start_page 18253
container_title ACS nano
container_volume 17
creator Guo, Yan
Li, Jing
Yuan, Gaoqian
Guo, Junpo
Zheng, Yun
Huang, Yike
Zhang, Qi
Li, Jielei
Shen, Jingjun
Shu, Chenhao
Xu, Jincheng
Tang, Yuxin
Lei, Wen
Shao, Huaiyu
description Defects are generally considered to be effective and flexible in the catalytic reactions of lithium–sulfur batteries. However, the influence of the defect concentration on catalysis remains ambiguous. In this work, molybdenum sulfide with different sulfur vacancy concentrations is comprehensively modulated, showing that the defect level and the adsorption-catalytic performance result in a volcano relationship. Moreover, density functional theory and in situ experiments reveal that the optimal level of sulfur defects can effectively increase the binding energy between molybdenum sulfide and lithium polysulfides (LiPSs), lower the energy barrier of the LiPS conversion reaction, and promote the kinetics of Li2S bidirectional catalytic reaction. The lower bidirectional catalytic performance incited by excessive or deficient sulfur defects is mainly due to the deformed geometrical structures and reduced adsorption of key LiPSs on the catalyst surface. This work underscores the imperative of controlling the defect content and provides a potential approach to the commercialization of lithium–sulfur batteries.
doi_str_mv 10.1021/acsnano.3c05269
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2861644271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861644271</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-4003cd6043bbdfb28ec8e44e2da33587b75966f75170989ea0a4b9f11eedf3ab3</originalsourceid><addsrcrecordid>eNp1kL9OwzAQhy0EEqUws3pEQmntOHGSEUr5I1VioCC26OKcW1epU2ynUjfegTfkSQhqxcZ0p7vvd9J9hFxyNuIs5mNQ3oJtR0KxNJbFERnwQsiI5fL9-K9P-Sk5837FWJrlmRwQnDadMjUEYxc0LJG-tY0Ca1Q0322QTiBAswtG0Vtcwta0jhpLZyYsTbf-_vx66RrdOXoLIaAz6OnWAL1DjSrQqV0Yi_3YLs7JiYbG48WhDsnr_XQ-eYxmzw9Pk5tZBIKzECWMCVVLloiqqnUV56hyTBKMaxAizbMqSwspdZbyjBV5gcAgqQrNOWKtBVRiSK72dzeu_ejQh3JtvMKmAYtt58s4l1wmSZzxHh3vUeVa7x3qcuPMGtyu5Kz8FVoehJYHoX3iep_oF-Wq7ZztX_mX_gHKr3ux</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861644271</pqid></control><display><type>article</type><title>Elucidating the Volcanic-Type Catalytic Behavior in Lithium–Sulfur Batteries via Defect Engineering</title><source>American Chemical Society Journals</source><creator>Guo, Yan ; Li, Jing ; Yuan, Gaoqian ; Guo, Junpo ; Zheng, Yun ; Huang, Yike ; Zhang, Qi ; Li, Jielei ; Shen, Jingjun ; Shu, Chenhao ; Xu, Jincheng ; Tang, Yuxin ; Lei, Wen ; Shao, Huaiyu</creator><creatorcontrib>Guo, Yan ; Li, Jing ; Yuan, Gaoqian ; Guo, Junpo ; Zheng, Yun ; Huang, Yike ; Zhang, Qi ; Li, Jielei ; Shen, Jingjun ; Shu, Chenhao ; Xu, Jincheng ; Tang, Yuxin ; Lei, Wen ; Shao, Huaiyu</creatorcontrib><description>Defects are generally considered to be effective and flexible in the catalytic reactions of lithium–sulfur batteries. However, the influence of the defect concentration on catalysis remains ambiguous. In this work, molybdenum sulfide with different sulfur vacancy concentrations is comprehensively modulated, showing that the defect level and the adsorption-catalytic performance result in a volcano relationship. Moreover, density functional theory and in situ experiments reveal that the optimal level of sulfur defects can effectively increase the binding energy between molybdenum sulfide and lithium polysulfides (LiPSs), lower the energy barrier of the LiPS conversion reaction, and promote the kinetics of Li2S bidirectional catalytic reaction. The lower bidirectional catalytic performance incited by excessive or deficient sulfur defects is mainly due to the deformed geometrical structures and reduced adsorption of key LiPSs on the catalyst surface. This work underscores the imperative of controlling the defect content and provides a potential approach to the commercialization of lithium–sulfur batteries.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c05269</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2023-09, Vol.17 (18), p.18253-18265</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a310t-4003cd6043bbdfb28ec8e44e2da33587b75966f75170989ea0a4b9f11eedf3ab3</citedby><cites>FETCH-LOGICAL-a310t-4003cd6043bbdfb28ec8e44e2da33587b75966f75170989ea0a4b9f11eedf3ab3</cites><orcidid>0000-0003-3069-5299 ; 0000-0001-9286-7071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.3c05269$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.3c05269$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Yuan, Gaoqian</creatorcontrib><creatorcontrib>Guo, Junpo</creatorcontrib><creatorcontrib>Zheng, Yun</creatorcontrib><creatorcontrib>Huang, Yike</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Li, Jielei</creatorcontrib><creatorcontrib>Shen, Jingjun</creatorcontrib><creatorcontrib>Shu, Chenhao</creatorcontrib><creatorcontrib>Xu, Jincheng</creatorcontrib><creatorcontrib>Tang, Yuxin</creatorcontrib><creatorcontrib>Lei, Wen</creatorcontrib><creatorcontrib>Shao, Huaiyu</creatorcontrib><title>Elucidating the Volcanic-Type Catalytic Behavior in Lithium–Sulfur Batteries via Defect Engineering</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Defects are generally considered to be effective and flexible in the catalytic reactions of lithium–sulfur batteries. However, the influence of the defect concentration on catalysis remains ambiguous. In this work, molybdenum sulfide with different sulfur vacancy concentrations is comprehensively modulated, showing that the defect level and the adsorption-catalytic performance result in a volcano relationship. Moreover, density functional theory and in situ experiments reveal that the optimal level of sulfur defects can effectively increase the binding energy between molybdenum sulfide and lithium polysulfides (LiPSs), lower the energy barrier of the LiPS conversion reaction, and promote the kinetics of Li2S bidirectional catalytic reaction. The lower bidirectional catalytic performance incited by excessive or deficient sulfur defects is mainly due to the deformed geometrical structures and reduced adsorption of key LiPSs on the catalyst surface. This work underscores the imperative of controlling the defect content and provides a potential approach to the commercialization of lithium–sulfur batteries.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQhy0EEqUws3pEQmntOHGSEUr5I1VioCC26OKcW1epU2ynUjfegTfkSQhqxcZ0p7vvd9J9hFxyNuIs5mNQ3oJtR0KxNJbFERnwQsiI5fL9-K9P-Sk5837FWJrlmRwQnDadMjUEYxc0LJG-tY0Ca1Q0322QTiBAswtG0Vtcwta0jhpLZyYsTbf-_vx66RrdOXoLIaAz6OnWAL1DjSrQqV0Yi_3YLs7JiYbG48WhDsnr_XQ-eYxmzw9Pk5tZBIKzECWMCVVLloiqqnUV56hyTBKMaxAizbMqSwspdZbyjBV5gcAgqQrNOWKtBVRiSK72dzeu_ejQh3JtvMKmAYtt58s4l1wmSZzxHh3vUeVa7x3qcuPMGtyu5Kz8FVoehJYHoX3iep_oF-Wq7ZztX_mX_gHKr3ux</recordid><startdate>20230926</startdate><enddate>20230926</enddate><creator>Guo, Yan</creator><creator>Li, Jing</creator><creator>Yuan, Gaoqian</creator><creator>Guo, Junpo</creator><creator>Zheng, Yun</creator><creator>Huang, Yike</creator><creator>Zhang, Qi</creator><creator>Li, Jielei</creator><creator>Shen, Jingjun</creator><creator>Shu, Chenhao</creator><creator>Xu, Jincheng</creator><creator>Tang, Yuxin</creator><creator>Lei, Wen</creator><creator>Shao, Huaiyu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3069-5299</orcidid><orcidid>https://orcid.org/0000-0001-9286-7071</orcidid></search><sort><creationdate>20230926</creationdate><title>Elucidating the Volcanic-Type Catalytic Behavior in Lithium–Sulfur Batteries via Defect Engineering</title><author>Guo, Yan ; Li, Jing ; Yuan, Gaoqian ; Guo, Junpo ; Zheng, Yun ; Huang, Yike ; Zhang, Qi ; Li, Jielei ; Shen, Jingjun ; Shu, Chenhao ; Xu, Jincheng ; Tang, Yuxin ; Lei, Wen ; Shao, Huaiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-4003cd6043bbdfb28ec8e44e2da33587b75966f75170989ea0a4b9f11eedf3ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Yuan, Gaoqian</creatorcontrib><creatorcontrib>Guo, Junpo</creatorcontrib><creatorcontrib>Zheng, Yun</creatorcontrib><creatorcontrib>Huang, Yike</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Li, Jielei</creatorcontrib><creatorcontrib>Shen, Jingjun</creatorcontrib><creatorcontrib>Shu, Chenhao</creatorcontrib><creatorcontrib>Xu, Jincheng</creatorcontrib><creatorcontrib>Tang, Yuxin</creatorcontrib><creatorcontrib>Lei, Wen</creatorcontrib><creatorcontrib>Shao, Huaiyu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yan</au><au>Li, Jing</au><au>Yuan, Gaoqian</au><au>Guo, Junpo</au><au>Zheng, Yun</au><au>Huang, Yike</au><au>Zhang, Qi</au><au>Li, Jielei</au><au>Shen, Jingjun</au><au>Shu, Chenhao</au><au>Xu, Jincheng</au><au>Tang, Yuxin</au><au>Lei, Wen</au><au>Shao, Huaiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Volcanic-Type Catalytic Behavior in Lithium–Sulfur Batteries via Defect Engineering</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-09-26</date><risdate>2023</risdate><volume>17</volume><issue>18</issue><spage>18253</spage><epage>18265</epage><pages>18253-18265</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Defects are generally considered to be effective and flexible in the catalytic reactions of lithium–sulfur batteries. However, the influence of the defect concentration on catalysis remains ambiguous. In this work, molybdenum sulfide with different sulfur vacancy concentrations is comprehensively modulated, showing that the defect level and the adsorption-catalytic performance result in a volcano relationship. Moreover, density functional theory and in situ experiments reveal that the optimal level of sulfur defects can effectively increase the binding energy between molybdenum sulfide and lithium polysulfides (LiPSs), lower the energy barrier of the LiPS conversion reaction, and promote the kinetics of Li2S bidirectional catalytic reaction. The lower bidirectional catalytic performance incited by excessive or deficient sulfur defects is mainly due to the deformed geometrical structures and reduced adsorption of key LiPSs on the catalyst surface. This work underscores the imperative of controlling the defect content and provides a potential approach to the commercialization of lithium–sulfur batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.3c05269</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3069-5299</orcidid><orcidid>https://orcid.org/0000-0001-9286-7071</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-09, Vol.17 (18), p.18253-18265
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2861644271
source American Chemical Society Journals
title Elucidating the Volcanic-Type Catalytic Behavior in Lithium–Sulfur Batteries via Defect Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Volcanic-Type%20Catalytic%20Behavior%20in%20Lithium%E2%80%93Sulfur%20Batteries%20via%20Defect%20Engineering&rft.jtitle=ACS%20nano&rft.au=Guo,%20Yan&rft.date=2023-09-26&rft.volume=17&rft.issue=18&rft.spage=18253&rft.epage=18265&rft.pages=18253-18265&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c05269&rft_dat=%3Cproquest_cross%3E2861644271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861644271&rft_id=info:pmid/&rfr_iscdi=true