How thresholding in segmentation affects the regression performance of the linear model

Evaluating any model underlying the control of speech requires segmenting the continuous flow of speech effectors into sequences of movements. A virtually universal practice in this segmentation is to use a velocity-based threshold which identifies a movement onset or offset as the time at which the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JASA express letters 2023-09, Vol.3 (9)
Hauptverfasser: Kuberski, Stephan R., Gafos, Adamantios I.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title JASA express letters
container_volume 3
creator Kuberski, Stephan R.
Gafos, Adamantios I.
description Evaluating any model underlying the control of speech requires segmenting the continuous flow of speech effectors into sequences of movements. A virtually universal practice in this segmentation is to use a velocity-based threshold which identifies a movement onset or offset as the time at which the velocity of the relevant effector breaches some threshold percentage of the maximal velocity. Depending on the threshold choice, more or less of the movement's trajectory is left in for model regression. This paper makes explicit how the choice of this threshold modulates the regression performance of a dynamical model hypothesized to govern speech movements.
doi_str_mv 10.1121/10.0020815
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2861643838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861643838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-a0e3956821fecae15e6388a270540ea387f8997e292ff76e8bfc82ea263955183</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsXnyBHEVYzSZNNjlK0FQpeFI9L3E62K7vJmqSIb--u7cHTN8x8zAw_IdfA7gA43I9kjDMN8oTMuDJQABg4_Vefk4uUPhlTwJWYkfd1-KZ5FzHtQrdtfUNbTxM2Pfpscxs8tc5hndMoIY3YjGaa2gNGF2JvfY00uL9p13q0kfZhi90lOXO2S3h15Jy8PT2-LtfF5mX1vHzYFDWXJheWoTBSaQ7jEYsgUQmtLS-ZXDC0QpdOG1MiN9y5UqH-cLXmaMffjZSgxZzcHPYOMXztMeWqb1ONXWc9hn2quFagFkKLSb09qHUMKUV01RDb3safClg1pTfxmJ74Bb-PYaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861643838</pqid></control><display><type>article</type><title>How thresholding in segmentation affects the regression performance of the linear model</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kuberski, Stephan R. ; Gafos, Adamantios I.</creator><creatorcontrib>Kuberski, Stephan R. ; Gafos, Adamantios I.</creatorcontrib><description>Evaluating any model underlying the control of speech requires segmenting the continuous flow of speech effectors into sequences of movements. A virtually universal practice in this segmentation is to use a velocity-based threshold which identifies a movement onset or offset as the time at which the velocity of the relevant effector breaches some threshold percentage of the maximal velocity. Depending on the threshold choice, more or less of the movement's trajectory is left in for model regression. This paper makes explicit how the choice of this threshold modulates the regression performance of a dynamical model hypothesized to govern speech movements.</description><identifier>ISSN: 2691-1191</identifier><identifier>EISSN: 2691-1191</identifier><identifier>DOI: 10.1121/10.0020815</identifier><language>eng</language><ispartof>JASA express letters, 2023-09, Vol.3 (9)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-a0e3956821fecae15e6388a270540ea387f8997e292ff76e8bfc82ea263955183</cites><orcidid>0000-0003-4811-1263 ; 0000-0002-4905-7118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Kuberski, Stephan R.</creatorcontrib><creatorcontrib>Gafos, Adamantios I.</creatorcontrib><title>How thresholding in segmentation affects the regression performance of the linear model</title><title>JASA express letters</title><description>Evaluating any model underlying the control of speech requires segmenting the continuous flow of speech effectors into sequences of movements. A virtually universal practice in this segmentation is to use a velocity-based threshold which identifies a movement onset or offset as the time at which the velocity of the relevant effector breaches some threshold percentage of the maximal velocity. Depending on the threshold choice, more or less of the movement's trajectory is left in for model regression. This paper makes explicit how the choice of this threshold modulates the regression performance of a dynamical model hypothesized to govern speech movements.</description><issn>2691-1191</issn><issn>2691-1191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMFKAzEQhoMoWKsXnyBHEVYzSZNNjlK0FQpeFI9L3E62K7vJmqSIb--u7cHTN8x8zAw_IdfA7gA43I9kjDMN8oTMuDJQABg4_Vefk4uUPhlTwJWYkfd1-KZ5FzHtQrdtfUNbTxM2Pfpscxs8tc5hndMoIY3YjGaa2gNGF2JvfY00uL9p13q0kfZhi90lOXO2S3h15Jy8PT2-LtfF5mX1vHzYFDWXJheWoTBSaQ7jEYsgUQmtLS-ZXDC0QpdOG1MiN9y5UqH-cLXmaMffjZSgxZzcHPYOMXztMeWqb1ONXWc9hn2quFagFkKLSb09qHUMKUV01RDb3safClg1pTfxmJ74Bb-PYaE</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Kuberski, Stephan R.</creator><creator>Gafos, Adamantios I.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4811-1263</orcidid><orcidid>https://orcid.org/0000-0002-4905-7118</orcidid></search><sort><creationdate>20230901</creationdate><title>How thresholding in segmentation affects the regression performance of the linear model</title><author>Kuberski, Stephan R. ; Gafos, Adamantios I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-a0e3956821fecae15e6388a270540ea387f8997e292ff76e8bfc82ea263955183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuberski, Stephan R.</creatorcontrib><creatorcontrib>Gafos, Adamantios I.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>JASA express letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuberski, Stephan R.</au><au>Gafos, Adamantios I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How thresholding in segmentation affects the regression performance of the linear model</atitle><jtitle>JASA express letters</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>3</volume><issue>9</issue><issn>2691-1191</issn><eissn>2691-1191</eissn><abstract>Evaluating any model underlying the control of speech requires segmenting the continuous flow of speech effectors into sequences of movements. A virtually universal practice in this segmentation is to use a velocity-based threshold which identifies a movement onset or offset as the time at which the velocity of the relevant effector breaches some threshold percentage of the maximal velocity. Depending on the threshold choice, more or less of the movement's trajectory is left in for model regression. This paper makes explicit how the choice of this threshold modulates the regression performance of a dynamical model hypothesized to govern speech movements.</abstract><doi>10.1121/10.0020815</doi><orcidid>https://orcid.org/0000-0003-4811-1263</orcidid><orcidid>https://orcid.org/0000-0002-4905-7118</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2691-1191
ispartof JASA express letters, 2023-09, Vol.3 (9)
issn 2691-1191
2691-1191
language eng
recordid cdi_proquest_miscellaneous_2861643838
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title How thresholding in segmentation affects the regression performance of the linear model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A35%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20thresholding%20in%20segmentation%20affects%20the%20regression%20performance%20of%20the%20linear%20model&rft.jtitle=JASA%20express%20letters&rft.au=Kuberski,%20Stephan%20R.&rft.date=2023-09-01&rft.volume=3&rft.issue=9&rft.issn=2691-1191&rft.eissn=2691-1191&rft_id=info:doi/10.1121/10.0020815&rft_dat=%3Cproquest_cross%3E2861643838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861643838&rft_id=info:pmid/&rfr_iscdi=true