Asymptotic recovery for discrete-time systems

An asymptotic recovery design procedure is proposed for square, discrete-time, linear, time-invariant multivariable systems, which allows a state-feedback design to be approximately recovered by a dynamic output feedback scheme. Both the case of negligible processing time (compared to the sampling i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1985-06, Vol.30 (6), p.602-605
1. Verfasser: Maciejowski, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 605
container_issue 6
container_start_page 602
container_title IEEE transactions on automatic control
container_volume 30
creator Maciejowski, J.
description An asymptotic recovery design procedure is proposed for square, discrete-time, linear, time-invariant multivariable systems, which allows a state-feedback design to be approximately recovered by a dynamic output feedback scheme. Both the case of negligible processing time (compared to the sampling interval) and of significant processing time are discussed. In the former case, it is possible to obtain perfect recovery if the plant is minimum-phase and has the smallest possible number of zeros at infinity. In other cases good recovery is frequently possible. New conditions are found which ensure that the return-ratio being recovered exhibits good robustness properties.
doi_str_mv 10.1109/TAC.1985.1104010
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28613467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1104010</ieee_id><sourcerecordid>29071581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-bae28beb0809fb4a10b0955478eb8d2f80f4917a3f388d1ba8a6816c4b9cae2b3</originalsourceid><addsrcrecordid>eNqFkD1rwzAQhkVpoWnavdDFQ-nmVGdL9mkMoV8Q6JLOQlJO4GLHqeQU_O-rENOOnY6D5325exi7Bb4A4Opxs1wtQKE8boIDP2MzkBLzQhblOZtxDpirAqtLdhXjZ1orIWDG8mUcu_3QD43LArn-m8KY-T5k2ya6QAPlQ9NRFsc4UBev2YU3baSbac7Zx_PTZvWar99f3lbLde5KWQy5NVSgJcuRK2-FAW65klLUSBa3hUfuhYLalL5E3II1aCqEygmrXIracs4eTr370H8dKA66S-dQ25od9YeoC8VrkAj_g1hBKao6gfwEutDHGMjrfWg6E0YNXB8F6iRQHwXqSWCK3E_dJjrT-mB2rom_ufSArKsyYXcnrCGiv9ap5AeE5HhC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28613467</pqid></control><display><type>article</type><title>Asymptotic recovery for discrete-time systems</title><source>IEEE Electronic Library (IEL)</source><creator>Maciejowski, J.</creator><creatorcontrib>Maciejowski, J.</creatorcontrib><description>An asymptotic recovery design procedure is proposed for square, discrete-time, linear, time-invariant multivariable systems, which allows a state-feedback design to be approximately recovered by a dynamic output feedback scheme. Both the case of negligible processing time (compared to the sampling interval) and of significant processing time are discussed. In the former case, it is possible to obtain perfect recovery if the plant is minimum-phase and has the smallest possible number of zeros at infinity. In other cases good recovery is frequently possible. New conditions are found which ensure that the return-ratio being recovered exhibits good robustness properties.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1985.1104010</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Ambient intelligence ; Applied sciences ; Bismuth ; Boundary conditions ; Computer science; control theory; systems ; Continuous time systems ; Control system synthesis ; Control theory. Systems ; Controllability ; Differential equations ; Digital systems ; Exact sciences and technology ; Observability ; Partial differential equations ; Stability</subject><ispartof>IEEE transactions on automatic control, 1985-06, Vol.30 (6), p.602-605</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-bae28beb0809fb4a10b0955478eb8d2f80f4917a3f388d1ba8a6816c4b9cae2b3</citedby><cites>FETCH-LOGICAL-c352t-bae28beb0809fb4a10b0955478eb8d2f80f4917a3f388d1ba8a6816c4b9cae2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1104010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1104010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9175763$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Maciejowski, J.</creatorcontrib><title>Asymptotic recovery for discrete-time systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>An asymptotic recovery design procedure is proposed for square, discrete-time, linear, time-invariant multivariable systems, which allows a state-feedback design to be approximately recovered by a dynamic output feedback scheme. Both the case of negligible processing time (compared to the sampling interval) and of significant processing time are discussed. In the former case, it is possible to obtain perfect recovery if the plant is minimum-phase and has the smallest possible number of zeros at infinity. In other cases good recovery is frequently possible. New conditions are found which ensure that the return-ratio being recovered exhibits good robustness properties.</description><subject>Ambient intelligence</subject><subject>Applied sciences</subject><subject>Bismuth</subject><subject>Boundary conditions</subject><subject>Computer science; control theory; systems</subject><subject>Continuous time systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Controllability</subject><subject>Differential equations</subject><subject>Digital systems</subject><subject>Exact sciences and technology</subject><subject>Observability</subject><subject>Partial differential equations</subject><subject>Stability</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqFkD1rwzAQhkVpoWnavdDFQ-nmVGdL9mkMoV8Q6JLOQlJO4GLHqeQU_O-rENOOnY6D5325exi7Bb4A4Opxs1wtQKE8boIDP2MzkBLzQhblOZtxDpirAqtLdhXjZ1orIWDG8mUcu_3QD43LArn-m8KY-T5k2ya6QAPlQ9NRFsc4UBev2YU3baSbac7Zx_PTZvWar99f3lbLde5KWQy5NVSgJcuRK2-FAW65klLUSBa3hUfuhYLalL5E3II1aCqEygmrXIracs4eTr370H8dKA66S-dQ25od9YeoC8VrkAj_g1hBKao6gfwEutDHGMjrfWg6E0YNXB8F6iRQHwXqSWCK3E_dJjrT-mB2rom_ufSArKsyYXcnrCGiv9ap5AeE5HhC</recordid><startdate>19850601</startdate><enddate>19850601</enddate><creator>Maciejowski, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19850601</creationdate><title>Asymptotic recovery for discrete-time systems</title><author>Maciejowski, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-bae28beb0809fb4a10b0955478eb8d2f80f4917a3f388d1ba8a6816c4b9cae2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Ambient intelligence</topic><topic>Applied sciences</topic><topic>Bismuth</topic><topic>Boundary conditions</topic><topic>Computer science; control theory; systems</topic><topic>Continuous time systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Controllability</topic><topic>Differential equations</topic><topic>Digital systems</topic><topic>Exact sciences and technology</topic><topic>Observability</topic><topic>Partial differential equations</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maciejowski, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maciejowski, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic recovery for discrete-time systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1985-06-01</date><risdate>1985</risdate><volume>30</volume><issue>6</issue><spage>602</spage><epage>605</epage><pages>602-605</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>An asymptotic recovery design procedure is proposed for square, discrete-time, linear, time-invariant multivariable systems, which allows a state-feedback design to be approximately recovered by a dynamic output feedback scheme. Both the case of negligible processing time (compared to the sampling interval) and of significant processing time are discussed. In the former case, it is possible to obtain perfect recovery if the plant is minimum-phase and has the smallest possible number of zeros at infinity. In other cases good recovery is frequently possible. New conditions are found which ensure that the return-ratio being recovered exhibits good robustness properties.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.1985.1104010</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1985-06, Vol.30 (6), p.602-605
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_28613467
source IEEE Electronic Library (IEL)
subjects Ambient intelligence
Applied sciences
Bismuth
Boundary conditions
Computer science
control theory
systems
Continuous time systems
Control system synthesis
Control theory. Systems
Controllability
Differential equations
Digital systems
Exact sciences and technology
Observability
Partial differential equations
Stability
title Asymptotic recovery for discrete-time systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20recovery%20for%20discrete-time%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Maciejowski,%20J.&rft.date=1985-06-01&rft.volume=30&rft.issue=6&rft.spage=602&rft.epage=605&rft.pages=602-605&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1985.1104010&rft_dat=%3Cproquest_RIE%3E29071581%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28613467&rft_id=info:pmid/&rft_ieee_id=1104010&rfr_iscdi=true