Asymptotic recovery for discrete-time systems
An asymptotic recovery design procedure is proposed for square, discrete-time, linear, time-invariant multivariable systems, which allows a state-feedback design to be approximately recovered by a dynamic output feedback scheme. Both the case of negligible processing time (compared to the sampling i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1985-06, Vol.30 (6), p.602-605 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 605 |
---|---|
container_issue | 6 |
container_start_page | 602 |
container_title | IEEE transactions on automatic control |
container_volume | 30 |
creator | Maciejowski, J. |
description | An asymptotic recovery design procedure is proposed for square, discrete-time, linear, time-invariant multivariable systems, which allows a state-feedback design to be approximately recovered by a dynamic output feedback scheme. Both the case of negligible processing time (compared to the sampling interval) and of significant processing time are discussed. In the former case, it is possible to obtain perfect recovery if the plant is minimum-phase and has the smallest possible number of zeros at infinity. In other cases good recovery is frequently possible. New conditions are found which ensure that the return-ratio being recovered exhibits good robustness properties. |
doi_str_mv | 10.1109/TAC.1985.1104010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28613467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1104010</ieee_id><sourcerecordid>29071581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-bae28beb0809fb4a10b0955478eb8d2f80f4917a3f388d1ba8a6816c4b9cae2b3</originalsourceid><addsrcrecordid>eNqFkD1rwzAQhkVpoWnavdDFQ-nmVGdL9mkMoV8Q6JLOQlJO4GLHqeQU_O-rENOOnY6D5325exi7Bb4A4Opxs1wtQKE8boIDP2MzkBLzQhblOZtxDpirAqtLdhXjZ1orIWDG8mUcu_3QD43LArn-m8KY-T5k2ya6QAPlQ9NRFsc4UBev2YU3baSbac7Zx_PTZvWar99f3lbLde5KWQy5NVSgJcuRK2-FAW65klLUSBa3hUfuhYLalL5E3II1aCqEygmrXIracs4eTr370H8dKA66S-dQ25od9YeoC8VrkAj_g1hBKao6gfwEutDHGMjrfWg6E0YNXB8F6iRQHwXqSWCK3E_dJjrT-mB2rom_ufSArKsyYXcnrCGiv9ap5AeE5HhC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28613467</pqid></control><display><type>article</type><title>Asymptotic recovery for discrete-time systems</title><source>IEEE Electronic Library (IEL)</source><creator>Maciejowski, J.</creator><creatorcontrib>Maciejowski, J.</creatorcontrib><description>An asymptotic recovery design procedure is proposed for square, discrete-time, linear, time-invariant multivariable systems, which allows a state-feedback design to be approximately recovered by a dynamic output feedback scheme. Both the case of negligible processing time (compared to the sampling interval) and of significant processing time are discussed. In the former case, it is possible to obtain perfect recovery if the plant is minimum-phase and has the smallest possible number of zeros at infinity. In other cases good recovery is frequently possible. New conditions are found which ensure that the return-ratio being recovered exhibits good robustness properties.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1985.1104010</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Ambient intelligence ; Applied sciences ; Bismuth ; Boundary conditions ; Computer science; control theory; systems ; Continuous time systems ; Control system synthesis ; Control theory. Systems ; Controllability ; Differential equations ; Digital systems ; Exact sciences and technology ; Observability ; Partial differential equations ; Stability</subject><ispartof>IEEE transactions on automatic control, 1985-06, Vol.30 (6), p.602-605</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-bae28beb0809fb4a10b0955478eb8d2f80f4917a3f388d1ba8a6816c4b9cae2b3</citedby><cites>FETCH-LOGICAL-c352t-bae28beb0809fb4a10b0955478eb8d2f80f4917a3f388d1ba8a6816c4b9cae2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1104010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1104010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9175763$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Maciejowski, J.</creatorcontrib><title>Asymptotic recovery for discrete-time systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>An asymptotic recovery design procedure is proposed for square, discrete-time, linear, time-invariant multivariable systems, which allows a state-feedback design to be approximately recovered by a dynamic output feedback scheme. Both the case of negligible processing time (compared to the sampling interval) and of significant processing time are discussed. In the former case, it is possible to obtain perfect recovery if the plant is minimum-phase and has the smallest possible number of zeros at infinity. In other cases good recovery is frequently possible. New conditions are found which ensure that the return-ratio being recovered exhibits good robustness properties.</description><subject>Ambient intelligence</subject><subject>Applied sciences</subject><subject>Bismuth</subject><subject>Boundary conditions</subject><subject>Computer science; control theory; systems</subject><subject>Continuous time systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Controllability</subject><subject>Differential equations</subject><subject>Digital systems</subject><subject>Exact sciences and technology</subject><subject>Observability</subject><subject>Partial differential equations</subject><subject>Stability</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqFkD1rwzAQhkVpoWnavdDFQ-nmVGdL9mkMoV8Q6JLOQlJO4GLHqeQU_O-rENOOnY6D5325exi7Bb4A4Opxs1wtQKE8boIDP2MzkBLzQhblOZtxDpirAqtLdhXjZ1orIWDG8mUcu_3QD43LArn-m8KY-T5k2ya6QAPlQ9NRFsc4UBev2YU3baSbac7Zx_PTZvWar99f3lbLde5KWQy5NVSgJcuRK2-FAW65klLUSBa3hUfuhYLalL5E3II1aCqEygmrXIracs4eTr370H8dKA66S-dQ25od9YeoC8VrkAj_g1hBKao6gfwEutDHGMjrfWg6E0YNXB8F6iRQHwXqSWCK3E_dJjrT-mB2rom_ufSArKsyYXcnrCGiv9ap5AeE5HhC</recordid><startdate>19850601</startdate><enddate>19850601</enddate><creator>Maciejowski, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19850601</creationdate><title>Asymptotic recovery for discrete-time systems</title><author>Maciejowski, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-bae28beb0809fb4a10b0955478eb8d2f80f4917a3f388d1ba8a6816c4b9cae2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Ambient intelligence</topic><topic>Applied sciences</topic><topic>Bismuth</topic><topic>Boundary conditions</topic><topic>Computer science; control theory; systems</topic><topic>Continuous time systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Controllability</topic><topic>Differential equations</topic><topic>Digital systems</topic><topic>Exact sciences and technology</topic><topic>Observability</topic><topic>Partial differential equations</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maciejowski, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maciejowski, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic recovery for discrete-time systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1985-06-01</date><risdate>1985</risdate><volume>30</volume><issue>6</issue><spage>602</spage><epage>605</epage><pages>602-605</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>An asymptotic recovery design procedure is proposed for square, discrete-time, linear, time-invariant multivariable systems, which allows a state-feedback design to be approximately recovered by a dynamic output feedback scheme. Both the case of negligible processing time (compared to the sampling interval) and of significant processing time are discussed. In the former case, it is possible to obtain perfect recovery if the plant is minimum-phase and has the smallest possible number of zeros at infinity. In other cases good recovery is frequently possible. New conditions are found which ensure that the return-ratio being recovered exhibits good robustness properties.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.1985.1104010</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1985-06, Vol.30 (6), p.602-605 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_28613467 |
source | IEEE Electronic Library (IEL) |
subjects | Ambient intelligence Applied sciences Bismuth Boundary conditions Computer science control theory systems Continuous time systems Control system synthesis Control theory. Systems Controllability Differential equations Digital systems Exact sciences and technology Observability Partial differential equations Stability |
title | Asymptotic recovery for discrete-time systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20recovery%20for%20discrete-time%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Maciejowski,%20J.&rft.date=1985-06-01&rft.volume=30&rft.issue=6&rft.spage=602&rft.epage=605&rft.pages=602-605&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1985.1104010&rft_dat=%3Cproquest_RIE%3E29071581%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28613467&rft_id=info:pmid/&rft_ieee_id=1104010&rfr_iscdi=true |