Buried‐Metal‐Grid Electrodes for Efficient Parallel‐Connected Perovskite Solar Cells

The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large‐area devices. Herein, buried‐metal‐grid tin‐doped indium oxide (BMG ITO) electrodes are developed to minimize the power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-01, Vol.36 (2), p.e2305238-n/a
Hauptverfasser: Li, Lei, Chen, Peng, Su, Rui, Xu, Hongyu, Li, Qiuyang, Zhong, Qixuan, Yan, Haoming, Yang, Xiaoyu, Hu, Juntao, Li, Shunde, Huang, Tianyu, Xiao, Yun, Liu, Bin, Ji, Yongqiang, Wang, Dengke, Sun, Huiliang, Guo, Xugang, Lu, Zheng‐Hong, Snaith, Henry J., Gong, Qihuang, Zhao, Lichen, Zhu, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e2305238
container_title Advanced materials (Weinheim)
container_volume 36
creator Li, Lei
Chen, Peng
Su, Rui
Xu, Hongyu
Li, Qiuyang
Zhong, Qixuan
Yan, Haoming
Yang, Xiaoyu
Hu, Juntao
Li, Shunde
Huang, Tianyu
Xiao, Yun
Liu, Bin
Ji, Yongqiang
Wang, Dengke
Sun, Huiliang
Guo, Xugang
Lu, Zheng‐Hong
Snaith, Henry J.
Gong, Qihuang
Zhao, Lichen
Zhu, Rui
description The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large‐area devices. Herein, buried‐metal‐grid tin‐doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140‐nm‐thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq−1. The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO‐based PSCs, the BMG ITO‐based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel‐connected large‐area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted‐structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large‐area PSCs. The unfavorable conductivity of existing transparent conducting oxide electrodes restricts the development of large‐area perovskite solar cells. Herein, buried‐metal‐grid tin‐doped indium oxide electrodes are developed based on a photolithography technique. Such electrodes with greatly enhanced conductivity and low‐height metal steps help increase device performance and mitigate performance loss while upscaling cell area.
doi_str_mv 10.1002/adma.202305238
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2861304249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912956182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-4cc14b16ed46f8dca11cec6605f58c4b646c25684e0fd6beb744bafce4f78b953</originalsourceid><addsrcrecordid>eNqF0L1OHDEUBWALgWADaSnRSDQ0s9ge22OXy2ZDIi1iJZImjeWxr6UB7xjsmSC6PEKeMU-SWS0_Eg3Vbb57dHQQOiZ4SjCm58atzZRiWmFOK7mDJoRTUjKs-C6aYFXxUgkmD9CnnG8xxkpgsY8OqloIrmo-Qb8uhtSC-_fn7xX0Joz3MrWuWASwfYoOcuFjKhbet7aFri9WJpkQYAPnsetGBa5YQYq_813bQ3ETg0nFHELIR2jPm5Dh8_M9RD-_Ln7Mv5XL68vv89mytFVdyZJZS1hDBDgmvHTWEGLBCoG559KyRjBhKReSAfZONNDUjDXGW2C-lo3i1SE62-bep_gwQO71us12bGA6iEPWVApSYUaZGunpO3obh9SN7TRVhCouiKSjmm6VTTHnBF7fp3Zt0pMmWG9W15vV9evq48PJc-zQrMG98peZR6C24LEN8PRBnJ59uZq9hf8HGaGRZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912956182</pqid></control><display><type>article</type><title>Buried‐Metal‐Grid Electrodes for Efficient Parallel‐Connected Perovskite Solar Cells</title><source>Wiley Journals</source><creator>Li, Lei ; Chen, Peng ; Su, Rui ; Xu, Hongyu ; Li, Qiuyang ; Zhong, Qixuan ; Yan, Haoming ; Yang, Xiaoyu ; Hu, Juntao ; Li, Shunde ; Huang, Tianyu ; Xiao, Yun ; Liu, Bin ; Ji, Yongqiang ; Wang, Dengke ; Sun, Huiliang ; Guo, Xugang ; Lu, Zheng‐Hong ; Snaith, Henry J. ; Gong, Qihuang ; Zhao, Lichen ; Zhu, Rui</creator><creatorcontrib>Li, Lei ; Chen, Peng ; Su, Rui ; Xu, Hongyu ; Li, Qiuyang ; Zhong, Qixuan ; Yan, Haoming ; Yang, Xiaoyu ; Hu, Juntao ; Li, Shunde ; Huang, Tianyu ; Xiao, Yun ; Liu, Bin ; Ji, Yongqiang ; Wang, Dengke ; Sun, Huiliang ; Guo, Xugang ; Lu, Zheng‐Hong ; Snaith, Henry J. ; Gong, Qihuang ; Zhao, Lichen ; Zhu, Rui</creatorcontrib><description>The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large‐area devices. Herein, buried‐metal‐grid tin‐doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140‐nm‐thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq−1. The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO‐based PSCs, the BMG ITO‐based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel‐connected large‐area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted‐structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large‐area PSCs. The unfavorable conductivity of existing transparent conducting oxide electrodes restricts the development of large‐area perovskite solar cells. Herein, buried‐metal‐grid tin‐doped indium oxide electrodes are developed based on a photolithography technique. Such electrodes with greatly enhanced conductivity and low‐height metal steps help increase device performance and mitigate performance loss while upscaling cell area.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202305238</identifier><identifier>PMID: 37665975</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>buried metal grids ; Carrier transport ; Current carriers ; Electrical resistivity ; Electrodes ; Energy conversion efficiency ; Indium oxides ; Indium tin oxides ; large‐area devices ; parallel connection ; perovskite solar cells ; Perovskites ; Photolithography ; Photovoltaic cells ; Solar cells ; transparent conducting electrodes</subject><ispartof>Advanced materials (Weinheim), 2024-01, Vol.36 (2), p.e2305238-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-4cc14b16ed46f8dca11cec6605f58c4b646c25684e0fd6beb744bafce4f78b953</citedby><cites>FETCH-LOGICAL-c3738-4cc14b16ed46f8dca11cec6605f58c4b646c25684e0fd6beb744bafce4f78b953</cites><orcidid>0000-0001-7631-3589 ; 0000-0001-6146-3154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202305238$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202305238$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37665975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Xu, Hongyu</creatorcontrib><creatorcontrib>Li, Qiuyang</creatorcontrib><creatorcontrib>Zhong, Qixuan</creatorcontrib><creatorcontrib>Yan, Haoming</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Hu, Juntao</creatorcontrib><creatorcontrib>Li, Shunde</creatorcontrib><creatorcontrib>Huang, Tianyu</creatorcontrib><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Ji, Yongqiang</creatorcontrib><creatorcontrib>Wang, Dengke</creatorcontrib><creatorcontrib>Sun, Huiliang</creatorcontrib><creatorcontrib>Guo, Xugang</creatorcontrib><creatorcontrib>Lu, Zheng‐Hong</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Zhao, Lichen</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><title>Buried‐Metal‐Grid Electrodes for Efficient Parallel‐Connected Perovskite Solar Cells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large‐area devices. Herein, buried‐metal‐grid tin‐doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140‐nm‐thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq−1. The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO‐based PSCs, the BMG ITO‐based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel‐connected large‐area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted‐structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large‐area PSCs. The unfavorable conductivity of existing transparent conducting oxide electrodes restricts the development of large‐area perovskite solar cells. Herein, buried‐metal‐grid tin‐doped indium oxide electrodes are developed based on a photolithography technique. Such electrodes with greatly enhanced conductivity and low‐height metal steps help increase device performance and mitigate performance loss while upscaling cell area.</description><subject>buried metal grids</subject><subject>Carrier transport</subject><subject>Current carriers</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Energy conversion efficiency</subject><subject>Indium oxides</subject><subject>Indium tin oxides</subject><subject>large‐area devices</subject><subject>parallel connection</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photolithography</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>transparent conducting electrodes</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0L1OHDEUBWALgWADaSnRSDQ0s9ge22OXy2ZDIi1iJZImjeWxr6UB7xjsmSC6PEKeMU-SWS0_Eg3Vbb57dHQQOiZ4SjCm58atzZRiWmFOK7mDJoRTUjKs-C6aYFXxUgkmD9CnnG8xxkpgsY8OqloIrmo-Qb8uhtSC-_fn7xX0Joz3MrWuWASwfYoOcuFjKhbet7aFri9WJpkQYAPnsetGBa5YQYq_813bQ3ETg0nFHELIR2jPm5Dh8_M9RD-_Ln7Mv5XL68vv89mytFVdyZJZS1hDBDgmvHTWEGLBCoG559KyRjBhKReSAfZONNDUjDXGW2C-lo3i1SE62-bep_gwQO71us12bGA6iEPWVApSYUaZGunpO3obh9SN7TRVhCouiKSjmm6VTTHnBF7fp3Zt0pMmWG9W15vV9evq48PJc-zQrMG98peZR6C24LEN8PRBnJ59uZq9hf8HGaGRZA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Li, Lei</creator><creator>Chen, Peng</creator><creator>Su, Rui</creator><creator>Xu, Hongyu</creator><creator>Li, Qiuyang</creator><creator>Zhong, Qixuan</creator><creator>Yan, Haoming</creator><creator>Yang, Xiaoyu</creator><creator>Hu, Juntao</creator><creator>Li, Shunde</creator><creator>Huang, Tianyu</creator><creator>Xiao, Yun</creator><creator>Liu, Bin</creator><creator>Ji, Yongqiang</creator><creator>Wang, Dengke</creator><creator>Sun, Huiliang</creator><creator>Guo, Xugang</creator><creator>Lu, Zheng‐Hong</creator><creator>Snaith, Henry J.</creator><creator>Gong, Qihuang</creator><creator>Zhao, Lichen</creator><creator>Zhu, Rui</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7631-3589</orcidid><orcidid>https://orcid.org/0000-0001-6146-3154</orcidid></search><sort><creationdate>20240101</creationdate><title>Buried‐Metal‐Grid Electrodes for Efficient Parallel‐Connected Perovskite Solar Cells</title><author>Li, Lei ; Chen, Peng ; Su, Rui ; Xu, Hongyu ; Li, Qiuyang ; Zhong, Qixuan ; Yan, Haoming ; Yang, Xiaoyu ; Hu, Juntao ; Li, Shunde ; Huang, Tianyu ; Xiao, Yun ; Liu, Bin ; Ji, Yongqiang ; Wang, Dengke ; Sun, Huiliang ; Guo, Xugang ; Lu, Zheng‐Hong ; Snaith, Henry J. ; Gong, Qihuang ; Zhao, Lichen ; Zhu, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-4cc14b16ed46f8dca11cec6605f58c4b646c25684e0fd6beb744bafce4f78b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>buried metal grids</topic><topic>Carrier transport</topic><topic>Current carriers</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Energy conversion efficiency</topic><topic>Indium oxides</topic><topic>Indium tin oxides</topic><topic>large‐area devices</topic><topic>parallel connection</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photolithography</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>transparent conducting electrodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Xu, Hongyu</creatorcontrib><creatorcontrib>Li, Qiuyang</creatorcontrib><creatorcontrib>Zhong, Qixuan</creatorcontrib><creatorcontrib>Yan, Haoming</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Hu, Juntao</creatorcontrib><creatorcontrib>Li, Shunde</creatorcontrib><creatorcontrib>Huang, Tianyu</creatorcontrib><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Ji, Yongqiang</creatorcontrib><creatorcontrib>Wang, Dengke</creatorcontrib><creatorcontrib>Sun, Huiliang</creatorcontrib><creatorcontrib>Guo, Xugang</creatorcontrib><creatorcontrib>Lu, Zheng‐Hong</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Zhao, Lichen</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lei</au><au>Chen, Peng</au><au>Su, Rui</au><au>Xu, Hongyu</au><au>Li, Qiuyang</au><au>Zhong, Qixuan</au><au>Yan, Haoming</au><au>Yang, Xiaoyu</au><au>Hu, Juntao</au><au>Li, Shunde</au><au>Huang, Tianyu</au><au>Xiao, Yun</au><au>Liu, Bin</au><au>Ji, Yongqiang</au><au>Wang, Dengke</au><au>Sun, Huiliang</au><au>Guo, Xugang</au><au>Lu, Zheng‐Hong</au><au>Snaith, Henry J.</au><au>Gong, Qihuang</au><au>Zhao, Lichen</au><au>Zhu, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buried‐Metal‐Grid Electrodes for Efficient Parallel‐Connected Perovskite Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>36</volume><issue>2</issue><spage>e2305238</spage><epage>n/a</epage><pages>e2305238-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large‐area devices. Herein, buried‐metal‐grid tin‐doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140‐nm‐thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq−1. The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO‐based PSCs, the BMG ITO‐based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel‐connected large‐area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted‐structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large‐area PSCs. The unfavorable conductivity of existing transparent conducting oxide electrodes restricts the development of large‐area perovskite solar cells. Herein, buried‐metal‐grid tin‐doped indium oxide electrodes are developed based on a photolithography technique. Such electrodes with greatly enhanced conductivity and low‐height metal steps help increase device performance and mitigate performance loss while upscaling cell area.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37665975</pmid><doi>10.1002/adma.202305238</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7631-3589</orcidid><orcidid>https://orcid.org/0000-0001-6146-3154</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-01, Vol.36 (2), p.e2305238-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2861304249
source Wiley Journals
subjects buried metal grids
Carrier transport
Current carriers
Electrical resistivity
Electrodes
Energy conversion efficiency
Indium oxides
Indium tin oxides
large‐area devices
parallel connection
perovskite solar cells
Perovskites
Photolithography
Photovoltaic cells
Solar cells
transparent conducting electrodes
title Buried‐Metal‐Grid Electrodes for Efficient Parallel‐Connected Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buried%E2%80%90Metal%E2%80%90Grid%20Electrodes%20for%20Efficient%20Parallel%E2%80%90Connected%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Lei&rft.date=2024-01-01&rft.volume=36&rft.issue=2&rft.spage=e2305238&rft.epage=n/a&rft.pages=e2305238-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202305238&rft_dat=%3Cproquest_cross%3E2912956182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912956182&rft_id=info:pmid/37665975&rfr_iscdi=true