Buried‐Metal‐Grid Electrodes for Efficient Parallel‐Connected Perovskite Solar Cells
The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large‐area devices. Herein, buried‐metal‐grid tin‐doped indium oxide (BMG ITO) electrodes are developed to minimize the power...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-01, Vol.36 (2), p.e2305238-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e2305238 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Li, Lei Chen, Peng Su, Rui Xu, Hongyu Li, Qiuyang Zhong, Qixuan Yan, Haoming Yang, Xiaoyu Hu, Juntao Li, Shunde Huang, Tianyu Xiao, Yun Liu, Bin Ji, Yongqiang Wang, Dengke Sun, Huiliang Guo, Xugang Lu, Zheng‐Hong Snaith, Henry J. Gong, Qihuang Zhao, Lichen Zhu, Rui |
description | The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large‐area devices. Herein, buried‐metal‐grid tin‐doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140‐nm‐thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq−1. The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO‐based PSCs, the BMG ITO‐based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel‐connected large‐area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted‐structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large‐area PSCs.
The unfavorable conductivity of existing transparent conducting oxide electrodes restricts the development of large‐area perovskite solar cells. Herein, buried‐metal‐grid tin‐doped indium oxide electrodes are developed based on a photolithography technique. Such electrodes with greatly enhanced conductivity and low‐height metal steps help increase device performance and mitigate performance loss while upscaling cell area. |
doi_str_mv | 10.1002/adma.202305238 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2861304249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912956182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-4cc14b16ed46f8dca11cec6605f58c4b646c25684e0fd6beb744bafce4f78b953</originalsourceid><addsrcrecordid>eNqF0L1OHDEUBWALgWADaSnRSDQ0s9ge22OXy2ZDIi1iJZImjeWxr6UB7xjsmSC6PEKeMU-SWS0_Eg3Vbb57dHQQOiZ4SjCm58atzZRiWmFOK7mDJoRTUjKs-C6aYFXxUgkmD9CnnG8xxkpgsY8OqloIrmo-Qb8uhtSC-_fn7xX0Joz3MrWuWASwfYoOcuFjKhbet7aFri9WJpkQYAPnsetGBa5YQYq_813bQ3ETg0nFHELIR2jPm5Dh8_M9RD-_Ln7Mv5XL68vv89mytFVdyZJZS1hDBDgmvHTWEGLBCoG559KyRjBhKReSAfZONNDUjDXGW2C-lo3i1SE62-bep_gwQO71us12bGA6iEPWVApSYUaZGunpO3obh9SN7TRVhCouiKSjmm6VTTHnBF7fp3Zt0pMmWG9W15vV9evq48PJc-zQrMG98peZR6C24LEN8PRBnJ59uZq9hf8HGaGRZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912956182</pqid></control><display><type>article</type><title>Buried‐Metal‐Grid Electrodes for Efficient Parallel‐Connected Perovskite Solar Cells</title><source>Wiley Journals</source><creator>Li, Lei ; Chen, Peng ; Su, Rui ; Xu, Hongyu ; Li, Qiuyang ; Zhong, Qixuan ; Yan, Haoming ; Yang, Xiaoyu ; Hu, Juntao ; Li, Shunde ; Huang, Tianyu ; Xiao, Yun ; Liu, Bin ; Ji, Yongqiang ; Wang, Dengke ; Sun, Huiliang ; Guo, Xugang ; Lu, Zheng‐Hong ; Snaith, Henry J. ; Gong, Qihuang ; Zhao, Lichen ; Zhu, Rui</creator><creatorcontrib>Li, Lei ; Chen, Peng ; Su, Rui ; Xu, Hongyu ; Li, Qiuyang ; Zhong, Qixuan ; Yan, Haoming ; Yang, Xiaoyu ; Hu, Juntao ; Li, Shunde ; Huang, Tianyu ; Xiao, Yun ; Liu, Bin ; Ji, Yongqiang ; Wang, Dengke ; Sun, Huiliang ; Guo, Xugang ; Lu, Zheng‐Hong ; Snaith, Henry J. ; Gong, Qihuang ; Zhao, Lichen ; Zhu, Rui</creatorcontrib><description>The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large‐area devices. Herein, buried‐metal‐grid tin‐doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140‐nm‐thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq−1. The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO‐based PSCs, the BMG ITO‐based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel‐connected large‐area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted‐structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large‐area PSCs.
The unfavorable conductivity of existing transparent conducting oxide electrodes restricts the development of large‐area perovskite solar cells. Herein, buried‐metal‐grid tin‐doped indium oxide electrodes are developed based on a photolithography technique. Such electrodes with greatly enhanced conductivity and low‐height metal steps help increase device performance and mitigate performance loss while upscaling cell area.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202305238</identifier><identifier>PMID: 37665975</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>buried metal grids ; Carrier transport ; Current carriers ; Electrical resistivity ; Electrodes ; Energy conversion efficiency ; Indium oxides ; Indium tin oxides ; large‐area devices ; parallel connection ; perovskite solar cells ; Perovskites ; Photolithography ; Photovoltaic cells ; Solar cells ; transparent conducting electrodes</subject><ispartof>Advanced materials (Weinheim), 2024-01, Vol.36 (2), p.e2305238-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-4cc14b16ed46f8dca11cec6605f58c4b646c25684e0fd6beb744bafce4f78b953</citedby><cites>FETCH-LOGICAL-c3738-4cc14b16ed46f8dca11cec6605f58c4b646c25684e0fd6beb744bafce4f78b953</cites><orcidid>0000-0001-7631-3589 ; 0000-0001-6146-3154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202305238$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202305238$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37665975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Xu, Hongyu</creatorcontrib><creatorcontrib>Li, Qiuyang</creatorcontrib><creatorcontrib>Zhong, Qixuan</creatorcontrib><creatorcontrib>Yan, Haoming</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Hu, Juntao</creatorcontrib><creatorcontrib>Li, Shunde</creatorcontrib><creatorcontrib>Huang, Tianyu</creatorcontrib><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Ji, Yongqiang</creatorcontrib><creatorcontrib>Wang, Dengke</creatorcontrib><creatorcontrib>Sun, Huiliang</creatorcontrib><creatorcontrib>Guo, Xugang</creatorcontrib><creatorcontrib>Lu, Zheng‐Hong</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Zhao, Lichen</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><title>Buried‐Metal‐Grid Electrodes for Efficient Parallel‐Connected Perovskite Solar Cells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large‐area devices. Herein, buried‐metal‐grid tin‐doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140‐nm‐thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq−1. The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO‐based PSCs, the BMG ITO‐based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel‐connected large‐area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted‐structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large‐area PSCs.
The unfavorable conductivity of existing transparent conducting oxide electrodes restricts the development of large‐area perovskite solar cells. Herein, buried‐metal‐grid tin‐doped indium oxide electrodes are developed based on a photolithography technique. Such electrodes with greatly enhanced conductivity and low‐height metal steps help increase device performance and mitigate performance loss while upscaling cell area.</description><subject>buried metal grids</subject><subject>Carrier transport</subject><subject>Current carriers</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Energy conversion efficiency</subject><subject>Indium oxides</subject><subject>Indium tin oxides</subject><subject>large‐area devices</subject><subject>parallel connection</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photolithography</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>transparent conducting electrodes</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0L1OHDEUBWALgWADaSnRSDQ0s9ge22OXy2ZDIi1iJZImjeWxr6UB7xjsmSC6PEKeMU-SWS0_Eg3Vbb57dHQQOiZ4SjCm58atzZRiWmFOK7mDJoRTUjKs-C6aYFXxUgkmD9CnnG8xxkpgsY8OqloIrmo-Qb8uhtSC-_fn7xX0Joz3MrWuWASwfYoOcuFjKhbet7aFri9WJpkQYAPnsetGBa5YQYq_813bQ3ETg0nFHELIR2jPm5Dh8_M9RD-_Ln7Mv5XL68vv89mytFVdyZJZS1hDBDgmvHTWEGLBCoG559KyRjBhKReSAfZONNDUjDXGW2C-lo3i1SE62-bep_gwQO71us12bGA6iEPWVApSYUaZGunpO3obh9SN7TRVhCouiKSjmm6VTTHnBF7fp3Zt0pMmWG9W15vV9evq48PJc-zQrMG98peZR6C24LEN8PRBnJ59uZq9hf8HGaGRZA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Li, Lei</creator><creator>Chen, Peng</creator><creator>Su, Rui</creator><creator>Xu, Hongyu</creator><creator>Li, Qiuyang</creator><creator>Zhong, Qixuan</creator><creator>Yan, Haoming</creator><creator>Yang, Xiaoyu</creator><creator>Hu, Juntao</creator><creator>Li, Shunde</creator><creator>Huang, Tianyu</creator><creator>Xiao, Yun</creator><creator>Liu, Bin</creator><creator>Ji, Yongqiang</creator><creator>Wang, Dengke</creator><creator>Sun, Huiliang</creator><creator>Guo, Xugang</creator><creator>Lu, Zheng‐Hong</creator><creator>Snaith, Henry J.</creator><creator>Gong, Qihuang</creator><creator>Zhao, Lichen</creator><creator>Zhu, Rui</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7631-3589</orcidid><orcidid>https://orcid.org/0000-0001-6146-3154</orcidid></search><sort><creationdate>20240101</creationdate><title>Buried‐Metal‐Grid Electrodes for Efficient Parallel‐Connected Perovskite Solar Cells</title><author>Li, Lei ; Chen, Peng ; Su, Rui ; Xu, Hongyu ; Li, Qiuyang ; Zhong, Qixuan ; Yan, Haoming ; Yang, Xiaoyu ; Hu, Juntao ; Li, Shunde ; Huang, Tianyu ; Xiao, Yun ; Liu, Bin ; Ji, Yongqiang ; Wang, Dengke ; Sun, Huiliang ; Guo, Xugang ; Lu, Zheng‐Hong ; Snaith, Henry J. ; Gong, Qihuang ; Zhao, Lichen ; Zhu, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-4cc14b16ed46f8dca11cec6605f58c4b646c25684e0fd6beb744bafce4f78b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>buried metal grids</topic><topic>Carrier transport</topic><topic>Current carriers</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Energy conversion efficiency</topic><topic>Indium oxides</topic><topic>Indium tin oxides</topic><topic>large‐area devices</topic><topic>parallel connection</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photolithography</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>transparent conducting electrodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Xu, Hongyu</creatorcontrib><creatorcontrib>Li, Qiuyang</creatorcontrib><creatorcontrib>Zhong, Qixuan</creatorcontrib><creatorcontrib>Yan, Haoming</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Hu, Juntao</creatorcontrib><creatorcontrib>Li, Shunde</creatorcontrib><creatorcontrib>Huang, Tianyu</creatorcontrib><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Ji, Yongqiang</creatorcontrib><creatorcontrib>Wang, Dengke</creatorcontrib><creatorcontrib>Sun, Huiliang</creatorcontrib><creatorcontrib>Guo, Xugang</creatorcontrib><creatorcontrib>Lu, Zheng‐Hong</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Zhao, Lichen</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lei</au><au>Chen, Peng</au><au>Su, Rui</au><au>Xu, Hongyu</au><au>Li, Qiuyang</au><au>Zhong, Qixuan</au><au>Yan, Haoming</au><au>Yang, Xiaoyu</au><au>Hu, Juntao</au><au>Li, Shunde</au><au>Huang, Tianyu</au><au>Xiao, Yun</au><au>Liu, Bin</au><au>Ji, Yongqiang</au><au>Wang, Dengke</au><au>Sun, Huiliang</au><au>Guo, Xugang</au><au>Lu, Zheng‐Hong</au><au>Snaith, Henry J.</au><au>Gong, Qihuang</au><au>Zhao, Lichen</au><au>Zhu, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buried‐Metal‐Grid Electrodes for Efficient Parallel‐Connected Perovskite Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>36</volume><issue>2</issue><spage>e2305238</spage><epage>n/a</epage><pages>e2305238-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large‐area devices. Herein, buried‐metal‐grid tin‐doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140‐nm‐thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq−1. The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO‐based PSCs, the BMG ITO‐based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel‐connected large‐area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted‐structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large‐area PSCs.
The unfavorable conductivity of existing transparent conducting oxide electrodes restricts the development of large‐area perovskite solar cells. Herein, buried‐metal‐grid tin‐doped indium oxide electrodes are developed based on a photolithography technique. Such electrodes with greatly enhanced conductivity and low‐height metal steps help increase device performance and mitigate performance loss while upscaling cell area.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37665975</pmid><doi>10.1002/adma.202305238</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7631-3589</orcidid><orcidid>https://orcid.org/0000-0001-6146-3154</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-01, Vol.36 (2), p.e2305238-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2861304249 |
source | Wiley Journals |
subjects | buried metal grids Carrier transport Current carriers Electrical resistivity Electrodes Energy conversion efficiency Indium oxides Indium tin oxides large‐area devices parallel connection perovskite solar cells Perovskites Photolithography Photovoltaic cells Solar cells transparent conducting electrodes |
title | Buried‐Metal‐Grid Electrodes for Efficient Parallel‐Connected Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buried%E2%80%90Metal%E2%80%90Grid%20Electrodes%20for%20Efficient%20Parallel%E2%80%90Connected%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Lei&rft.date=2024-01-01&rft.volume=36&rft.issue=2&rft.spage=e2305238&rft.epage=n/a&rft.pages=e2305238-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202305238&rft_dat=%3Cproquest_cross%3E2912956182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912956182&rft_id=info:pmid/37665975&rfr_iscdi=true |