Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning
Antibody development, delivery, and efficacy are influenced by antibody-antigen affinity interactions, off-target interactions that reduce antibody bioavailability and pharmacokinetics, and repulsive self-interactions that increase the stability of concentrated antibody formulations and reduce their...
Gespeichert in:
Veröffentlicht in: | Nature biomedical engineering 2024-01, Vol.8 (1), p.45-56 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 45 |
container_title | Nature biomedical engineering |
container_volume | 8 |
creator | Makowski, Emily K. Wang, Tiexin Zupancic, Jennifer M. Huang, Jie Wu, Lina Schardt, John S. De Groot, Anne S. Elkins, Stephanie L. Martin, William D. Tessier, Peter M. |
description | Antibody development, delivery, and efficacy are influenced by antibody-antigen affinity interactions, off-target interactions that reduce antibody bioavailability and pharmacokinetics, and repulsive self-interactions that increase the stability of concentrated antibody formulations and reduce their corresponding viscosity. Yet identifying antibody variants with optimal combinations of these three types of interactions is challenging. Here we show that interpretable machine-learning classifiers, leveraging antibody structural features descriptive of their variable regions and trained on experimental data for a panel of 80 clinical-stage monoclonal antibodies, can identify antibodies with optimal combinations of low off-target binding in a common physiological-solution condition and low self-association in a common antibody-formulation condition. For three clinical-stage antibodies with suboptimal combinations of off-target binding and self-association, the classifiers predicted variable-region mutations that optimized non-affinity interactions while maintaining high-affinity antibody-antigen interactions. Interpretable machine-learning models may facilitate the optimization of antibody candidates for therapeutic applications.
Interpretable machine-learning models can identify clinical-stage monoclonal antibodies with optimal combinations of low off-target binding and low self-association in physiological and antibody-formulation conditions. |
doi_str_mv | 10.1038/s41551-023-01074-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2861302779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861302779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-2a8500a4316cee60d89fc7ed9f646fd759a53354d56b99b467096f48d07b823a3</originalsourceid><addsrcrecordid>eNp9kctqEDEUhgdRbKl9ARcScOMmmnsmSyneoNCNgruQSU7alJlkTDKCbnx1R6decOEqB_L9_znwDcNjSp5TwscXTVApKSaMY0KJFljdG04ZlRqPQn28_9d8Mpy3dksIoYYLo-XD4YRrpZRh_HT4drX2tKSvrqeSUYmo30B1K2w9eeRyT1MJCRqKpaIKYfMQUIM5Ytda8emIuRxQLhm3FXyKe3BKOaR8jT4nh1LuUNcK3U0zoMX5m5QBzeBq3pFHw4Po5gbnd-_Z8OH1q_cXb_Hl1Zt3Fy8vsedadszcKAlxglPlARQJo4leQzBRCRWDlsZJzqUIUk3GTEJpYlQUYyB6Ghl3_Gx4dvSutXzaoHW7pOZhnl2GsjXLRkU5YVqbHX36D3pbtpr36ywzVGuijCQ7xQ7K19JahWjXmhZXv1hK7A9D9jBkd0P2pyGr9tCTu-ptWiD8jvzysQP8ANr-la-h_tn9n9rvYHadcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917706950</pqid></control><display><type>article</type><title>Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Makowski, Emily K. ; Wang, Tiexin ; Zupancic, Jennifer M. ; Huang, Jie ; Wu, Lina ; Schardt, John S. ; De Groot, Anne S. ; Elkins, Stephanie L. ; Martin, William D. ; Tessier, Peter M.</creator><creatorcontrib>Makowski, Emily K. ; Wang, Tiexin ; Zupancic, Jennifer M. ; Huang, Jie ; Wu, Lina ; Schardt, John S. ; De Groot, Anne S. ; Elkins, Stephanie L. ; Martin, William D. ; Tessier, Peter M.</creatorcontrib><description>Antibody development, delivery, and efficacy are influenced by antibody-antigen affinity interactions, off-target interactions that reduce antibody bioavailability and pharmacokinetics, and repulsive self-interactions that increase the stability of concentrated antibody formulations and reduce their corresponding viscosity. Yet identifying antibody variants with optimal combinations of these three types of interactions is challenging. Here we show that interpretable machine-learning classifiers, leveraging antibody structural features descriptive of their variable regions and trained on experimental data for a panel of 80 clinical-stage monoclonal antibodies, can identify antibodies with optimal combinations of low off-target binding in a common physiological-solution condition and low self-association in a common antibody-formulation condition. For three clinical-stage antibodies with suboptimal combinations of off-target binding and self-association, the classifiers predicted variable-region mutations that optimized non-affinity interactions while maintaining high-affinity antibody-antigen interactions. Interpretable machine-learning models may facilitate the optimization of antibody candidates for therapeutic applications.
Interpretable machine-learning models can identify clinical-stage monoclonal antibodies with optimal combinations of low off-target binding and low self-association in physiological and antibody-formulation conditions.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-023-01074-6</identifier><identifier>PMID: 37666923</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/469 ; 631/61/338/469 ; 82 ; 82/1 ; 96/47 ; Affinity ; Antibodies, Monoclonal - chemistry ; Antibody Affinity ; Antigen-antibody interactions ; Antigens ; Binding ; Bioavailability ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Classifiers ; Learning algorithms ; Machine Learning ; Monoclonal antibodies ; Mutation ; Optimization ; Pharmacokinetics ; Physiology ; Self-association ; Therapeutic applications</subject><ispartof>Nature biomedical engineering, 2024-01, Vol.8 (1), p.45-56</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-2a8500a4316cee60d89fc7ed9f646fd759a53354d56b99b467096f48d07b823a3</citedby><cites>FETCH-LOGICAL-c375t-2a8500a4316cee60d89fc7ed9f646fd759a53354d56b99b467096f48d07b823a3</cites><orcidid>0000-0002-9709-9873 ; 0000-0002-3220-007X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41551-023-01074-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41551-023-01074-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37666923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makowski, Emily K.</creatorcontrib><creatorcontrib>Wang, Tiexin</creatorcontrib><creatorcontrib>Zupancic, Jennifer M.</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Wu, Lina</creatorcontrib><creatorcontrib>Schardt, John S.</creatorcontrib><creatorcontrib>De Groot, Anne S.</creatorcontrib><creatorcontrib>Elkins, Stephanie L.</creatorcontrib><creatorcontrib>Martin, William D.</creatorcontrib><creatorcontrib>Tessier, Peter M.</creatorcontrib><title>Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning</title><title>Nature biomedical engineering</title><addtitle>Nat. Biomed. Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>Antibody development, delivery, and efficacy are influenced by antibody-antigen affinity interactions, off-target interactions that reduce antibody bioavailability and pharmacokinetics, and repulsive self-interactions that increase the stability of concentrated antibody formulations and reduce their corresponding viscosity. Yet identifying antibody variants with optimal combinations of these three types of interactions is challenging. Here we show that interpretable machine-learning classifiers, leveraging antibody structural features descriptive of their variable regions and trained on experimental data for a panel of 80 clinical-stage monoclonal antibodies, can identify antibodies with optimal combinations of low off-target binding in a common physiological-solution condition and low self-association in a common antibody-formulation condition. For three clinical-stage antibodies with suboptimal combinations of off-target binding and self-association, the classifiers predicted variable-region mutations that optimized non-affinity interactions while maintaining high-affinity antibody-antigen interactions. Interpretable machine-learning models may facilitate the optimization of antibody candidates for therapeutic applications.
Interpretable machine-learning models can identify clinical-stage monoclonal antibodies with optimal combinations of low off-target binding and low self-association in physiological and antibody-formulation conditions.</description><subject>631/114/469</subject><subject>631/61/338/469</subject><subject>82</subject><subject>82/1</subject><subject>96/47</subject><subject>Affinity</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Antibody Affinity</subject><subject>Antigen-antibody interactions</subject><subject>Antigens</subject><subject>Binding</subject><subject>Bioavailability</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Classifiers</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Monoclonal antibodies</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Pharmacokinetics</subject><subject>Physiology</subject><subject>Self-association</subject><subject>Therapeutic applications</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctqEDEUhgdRbKl9ARcScOMmmnsmSyneoNCNgruQSU7alJlkTDKCbnx1R6decOEqB_L9_znwDcNjSp5TwscXTVApKSaMY0KJFljdG04ZlRqPQn28_9d8Mpy3dksIoYYLo-XD4YRrpZRh_HT4drX2tKSvrqeSUYmo30B1K2w9eeRyT1MJCRqKpaIKYfMQUIM5Ytda8emIuRxQLhm3FXyKe3BKOaR8jT4nh1LuUNcK3U0zoMX5m5QBzeBq3pFHw4Po5gbnd-_Z8OH1q_cXb_Hl1Zt3Fy8vsedadszcKAlxglPlARQJo4leQzBRCRWDlsZJzqUIUk3GTEJpYlQUYyB6Ghl3_Gx4dvSutXzaoHW7pOZhnl2GsjXLRkU5YVqbHX36D3pbtpr36ywzVGuijCQ7xQ7K19JahWjXmhZXv1hK7A9D9jBkd0P2pyGr9tCTu-ptWiD8jvzysQP8ANr-la-h_tn9n9rvYHadcA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Makowski, Emily K.</creator><creator>Wang, Tiexin</creator><creator>Zupancic, Jennifer M.</creator><creator>Huang, Jie</creator><creator>Wu, Lina</creator><creator>Schardt, John S.</creator><creator>De Groot, Anne S.</creator><creator>Elkins, Stephanie L.</creator><creator>Martin, William D.</creator><creator>Tessier, Peter M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9709-9873</orcidid><orcidid>https://orcid.org/0000-0002-3220-007X</orcidid></search><sort><creationdate>20240101</creationdate><title>Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning</title><author>Makowski, Emily K. ; Wang, Tiexin ; Zupancic, Jennifer M. ; Huang, Jie ; Wu, Lina ; Schardt, John S. ; De Groot, Anne S. ; Elkins, Stephanie L. ; Martin, William D. ; Tessier, Peter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-2a8500a4316cee60d89fc7ed9f646fd759a53354d56b99b467096f48d07b823a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114/469</topic><topic>631/61/338/469</topic><topic>82</topic><topic>82/1</topic><topic>96/47</topic><topic>Affinity</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Antibody Affinity</topic><topic>Antigen-antibody interactions</topic><topic>Antigens</topic><topic>Binding</topic><topic>Bioavailability</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Classifiers</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Monoclonal antibodies</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Pharmacokinetics</topic><topic>Physiology</topic><topic>Self-association</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makowski, Emily K.</creatorcontrib><creatorcontrib>Wang, Tiexin</creatorcontrib><creatorcontrib>Zupancic, Jennifer M.</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Wu, Lina</creatorcontrib><creatorcontrib>Schardt, John S.</creatorcontrib><creatorcontrib>De Groot, Anne S.</creatorcontrib><creatorcontrib>Elkins, Stephanie L.</creatorcontrib><creatorcontrib>Martin, William D.</creatorcontrib><creatorcontrib>Tessier, Peter M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makowski, Emily K.</au><au>Wang, Tiexin</au><au>Zupancic, Jennifer M.</au><au>Huang, Jie</au><au>Wu, Lina</au><au>Schardt, John S.</au><au>De Groot, Anne S.</au><au>Elkins, Stephanie L.</au><au>Martin, William D.</au><au>Tessier, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat. Biomed. Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>8</volume><issue>1</issue><spage>45</spage><epage>56</epage><pages>45-56</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>Antibody development, delivery, and efficacy are influenced by antibody-antigen affinity interactions, off-target interactions that reduce antibody bioavailability and pharmacokinetics, and repulsive self-interactions that increase the stability of concentrated antibody formulations and reduce their corresponding viscosity. Yet identifying antibody variants with optimal combinations of these three types of interactions is challenging. Here we show that interpretable machine-learning classifiers, leveraging antibody structural features descriptive of their variable regions and trained on experimental data for a panel of 80 clinical-stage monoclonal antibodies, can identify antibodies with optimal combinations of low off-target binding in a common physiological-solution condition and low self-association in a common antibody-formulation condition. For three clinical-stage antibodies with suboptimal combinations of off-target binding and self-association, the classifiers predicted variable-region mutations that optimized non-affinity interactions while maintaining high-affinity antibody-antigen interactions. Interpretable machine-learning models may facilitate the optimization of antibody candidates for therapeutic applications.
Interpretable machine-learning models can identify clinical-stage monoclonal antibodies with optimal combinations of low off-target binding and low self-association in physiological and antibody-formulation conditions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37666923</pmid><doi>10.1038/s41551-023-01074-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9709-9873</orcidid><orcidid>https://orcid.org/0000-0002-3220-007X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2157-846X |
ispartof | Nature biomedical engineering, 2024-01, Vol.8 (1), p.45-56 |
issn | 2157-846X 2157-846X |
language | eng |
recordid | cdi_proquest_miscellaneous_2861302779 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 631/114/469 631/61/338/469 82 82/1 96/47 Affinity Antibodies, Monoclonal - chemistry Antibody Affinity Antigen-antibody interactions Antigens Binding Bioavailability Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Classifiers Learning algorithms Machine Learning Monoclonal antibodies Mutation Optimization Pharmacokinetics Physiology Self-association Therapeutic applications |
title | Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20therapeutic%20antibodies%20for%20reduced%20self-association%20and%20non-specific%20binding%20via%20interpretable%20machine%20learning&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Makowski,%20Emily%20K.&rft.date=2024-01-01&rft.volume=8&rft.issue=1&rft.spage=45&rft.epage=56&rft.pages=45-56&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-023-01074-6&rft_dat=%3Cproquest_cross%3E2861302779%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917706950&rft_id=info:pmid/37666923&rfr_iscdi=true |