Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning

Antibody development, delivery, and efficacy are influenced by antibody-antigen affinity interactions, off-target interactions that reduce antibody bioavailability and pharmacokinetics, and repulsive self-interactions that increase the stability of concentrated antibody formulations and reduce their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biomedical engineering 2024-01, Vol.8 (1), p.45-56
Hauptverfasser: Makowski, Emily K., Wang, Tiexin, Zupancic, Jennifer M., Huang, Jie, Wu, Lina, Schardt, John S., De Groot, Anne S., Elkins, Stephanie L., Martin, William D., Tessier, Peter M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 45
container_title Nature biomedical engineering
container_volume 8
creator Makowski, Emily K.
Wang, Tiexin
Zupancic, Jennifer M.
Huang, Jie
Wu, Lina
Schardt, John S.
De Groot, Anne S.
Elkins, Stephanie L.
Martin, William D.
Tessier, Peter M.
description Antibody development, delivery, and efficacy are influenced by antibody-antigen affinity interactions, off-target interactions that reduce antibody bioavailability and pharmacokinetics, and repulsive self-interactions that increase the stability of concentrated antibody formulations and reduce their corresponding viscosity. Yet identifying antibody variants with optimal combinations of these three types of interactions is challenging. Here we show that interpretable machine-learning classifiers, leveraging antibody structural features descriptive of their variable regions and trained on experimental data for a panel of 80 clinical-stage monoclonal antibodies, can identify antibodies with optimal combinations of low off-target binding in a common physiological-solution condition and low self-association in a common antibody-formulation condition. For three clinical-stage antibodies with suboptimal combinations of off-target binding and self-association, the classifiers predicted variable-region mutations that optimized non-affinity interactions while maintaining high-affinity antibody-antigen interactions. Interpretable machine-learning models may facilitate the optimization of antibody candidates for therapeutic applications. Interpretable machine-learning models can identify clinical-stage monoclonal antibodies with optimal combinations of low off-target binding and low self-association in physiological and antibody-formulation conditions.
doi_str_mv 10.1038/s41551-023-01074-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2861302779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861302779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-2a8500a4316cee60d89fc7ed9f646fd759a53354d56b99b467096f48d07b823a3</originalsourceid><addsrcrecordid>eNp9kctqEDEUhgdRbKl9ARcScOMmmnsmSyneoNCNgruQSU7alJlkTDKCbnx1R6decOEqB_L9_znwDcNjSp5TwscXTVApKSaMY0KJFljdG04ZlRqPQn28_9d8Mpy3dksIoYYLo-XD4YRrpZRh_HT4drX2tKSvrqeSUYmo30B1K2w9eeRyT1MJCRqKpaIKYfMQUIM5Ytda8emIuRxQLhm3FXyKe3BKOaR8jT4nh1LuUNcK3U0zoMX5m5QBzeBq3pFHw4Po5gbnd-_Z8OH1q_cXb_Hl1Zt3Fy8vsedadszcKAlxglPlARQJo4leQzBRCRWDlsZJzqUIUk3GTEJpYlQUYyB6Ghl3_Gx4dvSutXzaoHW7pOZhnl2GsjXLRkU5YVqbHX36D3pbtpr36ywzVGuijCQ7xQ7K19JahWjXmhZXv1hK7A9D9jBkd0P2pyGr9tCTu-ptWiD8jvzysQP8ANr-la-h_tn9n9rvYHadcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917706950</pqid></control><display><type>article</type><title>Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Makowski, Emily K. ; Wang, Tiexin ; Zupancic, Jennifer M. ; Huang, Jie ; Wu, Lina ; Schardt, John S. ; De Groot, Anne S. ; Elkins, Stephanie L. ; Martin, William D. ; Tessier, Peter M.</creator><creatorcontrib>Makowski, Emily K. ; Wang, Tiexin ; Zupancic, Jennifer M. ; Huang, Jie ; Wu, Lina ; Schardt, John S. ; De Groot, Anne S. ; Elkins, Stephanie L. ; Martin, William D. ; Tessier, Peter M.</creatorcontrib><description>Antibody development, delivery, and efficacy are influenced by antibody-antigen affinity interactions, off-target interactions that reduce antibody bioavailability and pharmacokinetics, and repulsive self-interactions that increase the stability of concentrated antibody formulations and reduce their corresponding viscosity. Yet identifying antibody variants with optimal combinations of these three types of interactions is challenging. Here we show that interpretable machine-learning classifiers, leveraging antibody structural features descriptive of their variable regions and trained on experimental data for a panel of 80 clinical-stage monoclonal antibodies, can identify antibodies with optimal combinations of low off-target binding in a common physiological-solution condition and low self-association in a common antibody-formulation condition. For three clinical-stage antibodies with suboptimal combinations of off-target binding and self-association, the classifiers predicted variable-region mutations that optimized non-affinity interactions while maintaining high-affinity antibody-antigen interactions. Interpretable machine-learning models may facilitate the optimization of antibody candidates for therapeutic applications. Interpretable machine-learning models can identify clinical-stage monoclonal antibodies with optimal combinations of low off-target binding and low self-association in physiological and antibody-formulation conditions.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-023-01074-6</identifier><identifier>PMID: 37666923</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/469 ; 631/61/338/469 ; 82 ; 82/1 ; 96/47 ; Affinity ; Antibodies, Monoclonal - chemistry ; Antibody Affinity ; Antigen-antibody interactions ; Antigens ; Binding ; Bioavailability ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Classifiers ; Learning algorithms ; Machine Learning ; Monoclonal antibodies ; Mutation ; Optimization ; Pharmacokinetics ; Physiology ; Self-association ; Therapeutic applications</subject><ispartof>Nature biomedical engineering, 2024-01, Vol.8 (1), p.45-56</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-2a8500a4316cee60d89fc7ed9f646fd759a53354d56b99b467096f48d07b823a3</citedby><cites>FETCH-LOGICAL-c375t-2a8500a4316cee60d89fc7ed9f646fd759a53354d56b99b467096f48d07b823a3</cites><orcidid>0000-0002-9709-9873 ; 0000-0002-3220-007X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41551-023-01074-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41551-023-01074-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37666923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makowski, Emily K.</creatorcontrib><creatorcontrib>Wang, Tiexin</creatorcontrib><creatorcontrib>Zupancic, Jennifer M.</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Wu, Lina</creatorcontrib><creatorcontrib>Schardt, John S.</creatorcontrib><creatorcontrib>De Groot, Anne S.</creatorcontrib><creatorcontrib>Elkins, Stephanie L.</creatorcontrib><creatorcontrib>Martin, William D.</creatorcontrib><creatorcontrib>Tessier, Peter M.</creatorcontrib><title>Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning</title><title>Nature biomedical engineering</title><addtitle>Nat. Biomed. Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>Antibody development, delivery, and efficacy are influenced by antibody-antigen affinity interactions, off-target interactions that reduce antibody bioavailability and pharmacokinetics, and repulsive self-interactions that increase the stability of concentrated antibody formulations and reduce their corresponding viscosity. Yet identifying antibody variants with optimal combinations of these three types of interactions is challenging. Here we show that interpretable machine-learning classifiers, leveraging antibody structural features descriptive of their variable regions and trained on experimental data for a panel of 80 clinical-stage monoclonal antibodies, can identify antibodies with optimal combinations of low off-target binding in a common physiological-solution condition and low self-association in a common antibody-formulation condition. For three clinical-stage antibodies with suboptimal combinations of off-target binding and self-association, the classifiers predicted variable-region mutations that optimized non-affinity interactions while maintaining high-affinity antibody-antigen interactions. Interpretable machine-learning models may facilitate the optimization of antibody candidates for therapeutic applications. Interpretable machine-learning models can identify clinical-stage monoclonal antibodies with optimal combinations of low off-target binding and low self-association in physiological and antibody-formulation conditions.</description><subject>631/114/469</subject><subject>631/61/338/469</subject><subject>82</subject><subject>82/1</subject><subject>96/47</subject><subject>Affinity</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Antibody Affinity</subject><subject>Antigen-antibody interactions</subject><subject>Antigens</subject><subject>Binding</subject><subject>Bioavailability</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Classifiers</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Monoclonal antibodies</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Pharmacokinetics</subject><subject>Physiology</subject><subject>Self-association</subject><subject>Therapeutic applications</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctqEDEUhgdRbKl9ARcScOMmmnsmSyneoNCNgruQSU7alJlkTDKCbnx1R6decOEqB_L9_znwDcNjSp5TwscXTVApKSaMY0KJFljdG04ZlRqPQn28_9d8Mpy3dksIoYYLo-XD4YRrpZRh_HT4drX2tKSvrqeSUYmo30B1K2w9eeRyT1MJCRqKpaIKYfMQUIM5Ytda8emIuRxQLhm3FXyKe3BKOaR8jT4nh1LuUNcK3U0zoMX5m5QBzeBq3pFHw4Po5gbnd-_Z8OH1q_cXb_Hl1Zt3Fy8vsedadszcKAlxglPlARQJo4leQzBRCRWDlsZJzqUIUk3GTEJpYlQUYyB6Ghl3_Gx4dvSutXzaoHW7pOZhnl2GsjXLRkU5YVqbHX36D3pbtpr36ywzVGuijCQ7xQ7K19JahWjXmhZXv1hK7A9D9jBkd0P2pyGr9tCTu-ptWiD8jvzysQP8ANr-la-h_tn9n9rvYHadcA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Makowski, Emily K.</creator><creator>Wang, Tiexin</creator><creator>Zupancic, Jennifer M.</creator><creator>Huang, Jie</creator><creator>Wu, Lina</creator><creator>Schardt, John S.</creator><creator>De Groot, Anne S.</creator><creator>Elkins, Stephanie L.</creator><creator>Martin, William D.</creator><creator>Tessier, Peter M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9709-9873</orcidid><orcidid>https://orcid.org/0000-0002-3220-007X</orcidid></search><sort><creationdate>20240101</creationdate><title>Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning</title><author>Makowski, Emily K. ; Wang, Tiexin ; Zupancic, Jennifer M. ; Huang, Jie ; Wu, Lina ; Schardt, John S. ; De Groot, Anne S. ; Elkins, Stephanie L. ; Martin, William D. ; Tessier, Peter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-2a8500a4316cee60d89fc7ed9f646fd759a53354d56b99b467096f48d07b823a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114/469</topic><topic>631/61/338/469</topic><topic>82</topic><topic>82/1</topic><topic>96/47</topic><topic>Affinity</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Antibody Affinity</topic><topic>Antigen-antibody interactions</topic><topic>Antigens</topic><topic>Binding</topic><topic>Bioavailability</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Classifiers</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Monoclonal antibodies</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Pharmacokinetics</topic><topic>Physiology</topic><topic>Self-association</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makowski, Emily K.</creatorcontrib><creatorcontrib>Wang, Tiexin</creatorcontrib><creatorcontrib>Zupancic, Jennifer M.</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Wu, Lina</creatorcontrib><creatorcontrib>Schardt, John S.</creatorcontrib><creatorcontrib>De Groot, Anne S.</creatorcontrib><creatorcontrib>Elkins, Stephanie L.</creatorcontrib><creatorcontrib>Martin, William D.</creatorcontrib><creatorcontrib>Tessier, Peter M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makowski, Emily K.</au><au>Wang, Tiexin</au><au>Zupancic, Jennifer M.</au><au>Huang, Jie</au><au>Wu, Lina</au><au>Schardt, John S.</au><au>De Groot, Anne S.</au><au>Elkins, Stephanie L.</au><au>Martin, William D.</au><au>Tessier, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat. Biomed. Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>8</volume><issue>1</issue><spage>45</spage><epage>56</epage><pages>45-56</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>Antibody development, delivery, and efficacy are influenced by antibody-antigen affinity interactions, off-target interactions that reduce antibody bioavailability and pharmacokinetics, and repulsive self-interactions that increase the stability of concentrated antibody formulations and reduce their corresponding viscosity. Yet identifying antibody variants with optimal combinations of these three types of interactions is challenging. Here we show that interpretable machine-learning classifiers, leveraging antibody structural features descriptive of their variable regions and trained on experimental data for a panel of 80 clinical-stage monoclonal antibodies, can identify antibodies with optimal combinations of low off-target binding in a common physiological-solution condition and low self-association in a common antibody-formulation condition. For three clinical-stage antibodies with suboptimal combinations of off-target binding and self-association, the classifiers predicted variable-region mutations that optimized non-affinity interactions while maintaining high-affinity antibody-antigen interactions. Interpretable machine-learning models may facilitate the optimization of antibody candidates for therapeutic applications. Interpretable machine-learning models can identify clinical-stage monoclonal antibodies with optimal combinations of low off-target binding and low self-association in physiological and antibody-formulation conditions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37666923</pmid><doi>10.1038/s41551-023-01074-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9709-9873</orcidid><orcidid>https://orcid.org/0000-0002-3220-007X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2157-846X
ispartof Nature biomedical engineering, 2024-01, Vol.8 (1), p.45-56
issn 2157-846X
2157-846X
language eng
recordid cdi_proquest_miscellaneous_2861302779
source MEDLINE; SpringerLink Journals; Nature
subjects 631/114/469
631/61/338/469
82
82/1
96/47
Affinity
Antibodies, Monoclonal - chemistry
Antibody Affinity
Antigen-antibody interactions
Antigens
Binding
Bioavailability
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Classifiers
Learning algorithms
Machine Learning
Monoclonal antibodies
Mutation
Optimization
Pharmacokinetics
Physiology
Self-association
Therapeutic applications
title Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20therapeutic%20antibodies%20for%20reduced%20self-association%20and%20non-specific%20binding%20via%20interpretable%20machine%20learning&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Makowski,%20Emily%20K.&rft.date=2024-01-01&rft.volume=8&rft.issue=1&rft.spage=45&rft.epage=56&rft.pages=45-56&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-023-01074-6&rft_dat=%3Cproquest_cross%3E2861302779%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917706950&rft_id=info:pmid/37666923&rfr_iscdi=true