A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier–Stokes equations

A nonlinear additive Schwarz preconditioned inexact Newton method (ASPIN) was introduced recently for solving large sparse highly nonlinear systems of equations obtained from the discretization of nonlinear partial differential equations. In this paper, we discuss some extensions of ASPIN for solvin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2005-04, Vol.204 (2), p.666-691
Hauptverfasser: Hwang, Feng-Nan, Cai, Xiao-Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 691
container_issue 2
container_start_page 666
container_title Journal of computational physics
container_volume 204
creator Hwang, Feng-Nan
Cai, Xiao-Chuan
description A nonlinear additive Schwarz preconditioned inexact Newton method (ASPIN) was introduced recently for solving large sparse highly nonlinear systems of equations obtained from the discretization of nonlinear partial differential equations. In this paper, we discuss some extensions of ASPIN for solving steady-state incompressible Navier–Stokes equations with high Reynolds numbers in the velocity–pressure formulation. The key idea of ASPIN is to find the solution of the original system by solving a nonlinearly preconditioned system that has the same solution as the original system, but with more balanced nonlinearities. Our parallel nonlinear preconditioner is constructed using a nonlinear overlapping additive Schwarz method. To show the robustness and scalability of the algorithm, we present some numerical results obtained on a parallel computer for two benchmark problems: a driven cavity flow problem and a backward-facing step problem with high Reynolds numbers. The sparse nonlinear system is obtained by applying a Q 1 − Q 1 Galerkin least squares finite element discretization on two-dimensional unstructured meshes. We compare our approach with an inexact Newton method using different choices of forcing terms. Our numerical results show that ASPIN has good convergence and is more robust than the traditional inexact Newton method with respect to certain parameters such as the Reynolds number, the mesh size, and the number of processors.
doi_str_mv 10.1016/j.jcp.2004.10.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28607580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999104004322</els_id><sourcerecordid>28607580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-ca9db037bdf2f3262c99fffcb1cb005bfa116a2ca6d0bae033903a4dc383570a3</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2qSN1CH6A3n7hlGdubbCJOCLWAhOBAOVsTe1y89cbBzkLLqe_AG_IkdbQ9cxrNzP__0v8x9lXAUoBoTjbLjRmXEmBV9iXI-gNbCOigkmvRfGQLACmqruvEJ_Y55w0AtPWqXbCXMz5iwhAo8CEOwQ-EiaO1fvJPxO_MwzOmFz4mMnGYj3Egy4vqN5qJ39DzFAeO4WdMfnrYchdTeZq4LYacfR-I3-CTp_T29_Vuir8oc3rc4RyTj9iBw5Dpy_95yO6_f_txflld315cnZ9dV0bJdqoMdrYHte6tk07JRpquc86ZXpgeoO4dCtGgNNhY6JFAqQ4UrqxRrarXgOqQHe9zxxQfd5QnvfXZUAg4UNxlLdsG1nULRSj2QpNizomcHpPfYvqjBeiZst7oQlnPlOdToVw8p3sPlQZzUZ2Np8GQ9QXZpG3077j_AXtximE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28607580</pqid></control><display><type>article</type><title>A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier–Stokes equations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hwang, Feng-Nan ; Cai, Xiao-Chuan</creator><creatorcontrib>Hwang, Feng-Nan ; Cai, Xiao-Chuan</creatorcontrib><description>A nonlinear additive Schwarz preconditioned inexact Newton method (ASPIN) was introduced recently for solving large sparse highly nonlinear systems of equations obtained from the discretization of nonlinear partial differential equations. In this paper, we discuss some extensions of ASPIN for solving steady-state incompressible Navier–Stokes equations with high Reynolds numbers in the velocity–pressure formulation. The key idea of ASPIN is to find the solution of the original system by solving a nonlinearly preconditioned system that has the same solution as the original system, but with more balanced nonlinearities. Our parallel nonlinear preconditioner is constructed using a nonlinear overlapping additive Schwarz method. To show the robustness and scalability of the algorithm, we present some numerical results obtained on a parallel computer for two benchmark problems: a driven cavity flow problem and a backward-facing step problem with high Reynolds numbers. The sparse nonlinear system is obtained by applying a Q 1 − Q 1 Galerkin least squares finite element discretization on two-dimensional unstructured meshes. We compare our approach with an inexact Newton method using different choices of forcing terms. Our numerical results show that ASPIN has good convergence and is more robust than the traditional inexact Newton method with respect to certain parameters such as the Reynolds number, the mesh size, and the number of processors.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2004.10.025</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Domain decomposition ; Incompressible Navier–Stokes equations ; Inexact Newton ; Nonlinear additive Schwarz ; Nonlinear preconditioning ; Parallel computing</subject><ispartof>Journal of computational physics, 2005-04, Vol.204 (2), p.666-691</ispartof><rights>2004 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-ca9db037bdf2f3262c99fffcb1cb005bfa116a2ca6d0bae033903a4dc383570a3</citedby><cites>FETCH-LOGICAL-c328t-ca9db037bdf2f3262c99fffcb1cb005bfa116a2ca6d0bae033903a4dc383570a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2004.10.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hwang, Feng-Nan</creatorcontrib><creatorcontrib>Cai, Xiao-Chuan</creatorcontrib><title>A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier–Stokes equations</title><title>Journal of computational physics</title><description>A nonlinear additive Schwarz preconditioned inexact Newton method (ASPIN) was introduced recently for solving large sparse highly nonlinear systems of equations obtained from the discretization of nonlinear partial differential equations. In this paper, we discuss some extensions of ASPIN for solving steady-state incompressible Navier–Stokes equations with high Reynolds numbers in the velocity–pressure formulation. The key idea of ASPIN is to find the solution of the original system by solving a nonlinearly preconditioned system that has the same solution as the original system, but with more balanced nonlinearities. Our parallel nonlinear preconditioner is constructed using a nonlinear overlapping additive Schwarz method. To show the robustness and scalability of the algorithm, we present some numerical results obtained on a parallel computer for two benchmark problems: a driven cavity flow problem and a backward-facing step problem with high Reynolds numbers. The sparse nonlinear system is obtained by applying a Q 1 − Q 1 Galerkin least squares finite element discretization on two-dimensional unstructured meshes. We compare our approach with an inexact Newton method using different choices of forcing terms. Our numerical results show that ASPIN has good convergence and is more robust than the traditional inexact Newton method with respect to certain parameters such as the Reynolds number, the mesh size, and the number of processors.</description><subject>Domain decomposition</subject><subject>Incompressible Navier–Stokes equations</subject><subject>Inexact Newton</subject><subject>Nonlinear additive Schwarz</subject><subject>Nonlinear preconditioning</subject><subject>Parallel computing</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq2qSN1CH6A3n7hlGdubbCJOCLWAhOBAOVsTe1y89cbBzkLLqe_AG_IkdbQ9cxrNzP__0v8x9lXAUoBoTjbLjRmXEmBV9iXI-gNbCOigkmvRfGQLACmqruvEJ_Y55w0AtPWqXbCXMz5iwhAo8CEOwQ-EiaO1fvJPxO_MwzOmFz4mMnGYj3Egy4vqN5qJ39DzFAeO4WdMfnrYchdTeZq4LYacfR-I3-CTp_T29_Vuir8oc3rc4RyTj9iBw5Dpy_95yO6_f_txflld315cnZ9dV0bJdqoMdrYHte6tk07JRpquc86ZXpgeoO4dCtGgNNhY6JFAqQ4UrqxRrarXgOqQHe9zxxQfd5QnvfXZUAg4UNxlLdsG1nULRSj2QpNizomcHpPfYvqjBeiZst7oQlnPlOdToVw8p3sPlQZzUZ2Np8GQ9QXZpG3077j_AXtximE</recordid><startdate>20050410</startdate><enddate>20050410</enddate><creator>Hwang, Feng-Nan</creator><creator>Cai, Xiao-Chuan</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20050410</creationdate><title>A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier–Stokes equations</title><author>Hwang, Feng-Nan ; Cai, Xiao-Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-ca9db037bdf2f3262c99fffcb1cb005bfa116a2ca6d0bae033903a4dc383570a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Domain decomposition</topic><topic>Incompressible Navier–Stokes equations</topic><topic>Inexact Newton</topic><topic>Nonlinear additive Schwarz</topic><topic>Nonlinear preconditioning</topic><topic>Parallel computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Feng-Nan</creatorcontrib><creatorcontrib>Cai, Xiao-Chuan</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Feng-Nan</au><au>Cai, Xiao-Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier–Stokes equations</atitle><jtitle>Journal of computational physics</jtitle><date>2005-04-10</date><risdate>2005</risdate><volume>204</volume><issue>2</issue><spage>666</spage><epage>691</epage><pages>666-691</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A nonlinear additive Schwarz preconditioned inexact Newton method (ASPIN) was introduced recently for solving large sparse highly nonlinear systems of equations obtained from the discretization of nonlinear partial differential equations. In this paper, we discuss some extensions of ASPIN for solving steady-state incompressible Navier–Stokes equations with high Reynolds numbers in the velocity–pressure formulation. The key idea of ASPIN is to find the solution of the original system by solving a nonlinearly preconditioned system that has the same solution as the original system, but with more balanced nonlinearities. Our parallel nonlinear preconditioner is constructed using a nonlinear overlapping additive Schwarz method. To show the robustness and scalability of the algorithm, we present some numerical results obtained on a parallel computer for two benchmark problems: a driven cavity flow problem and a backward-facing step problem with high Reynolds numbers. The sparse nonlinear system is obtained by applying a Q 1 − Q 1 Galerkin least squares finite element discretization on two-dimensional unstructured meshes. We compare our approach with an inexact Newton method using different choices of forcing terms. Our numerical results show that ASPIN has good convergence and is more robust than the traditional inexact Newton method with respect to certain parameters such as the Reynolds number, the mesh size, and the number of processors.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2004.10.025</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2005-04, Vol.204 (2), p.666-691
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_28607580
source Access via ScienceDirect (Elsevier)
subjects Domain decomposition
Incompressible Navier–Stokes equations
Inexact Newton
Nonlinear additive Schwarz
Nonlinear preconditioning
Parallel computing
title A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier–Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T08%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parallel%20nonlinear%20additive%20Schwarz%20preconditioned%20inexact%20Newton%20algorithm%20for%20incompressible%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Hwang,%20Feng-Nan&rft.date=2005-04-10&rft.volume=204&rft.issue=2&rft.spage=666&rft.epage=691&rft.pages=666-691&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2004.10.025&rft_dat=%3Cproquest_cross%3E28607580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28607580&rft_id=info:pmid/&rft_els_id=S0021999104004322&rfr_iscdi=true