Upper and lower bounds analysis of electric induction intensity factors for multiple piezoelectric cracks by the BEM
For piezoelectric cracks, the correct magnitudes of the electric induction intensity factors (EIFs) are obtained by the semi-permeable boundary condition (BC) the solution procedure of which is a non-linear iterative process that are not well established so far. We propose to use the impermeable and...
Gespeichert in:
Veröffentlicht in: | Engineering analysis with boundary elements 2005-06, Vol.29 (6), p.533-550 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 550 |
---|---|
container_issue | 6 |
container_start_page | 533 |
container_title | Engineering analysis with boundary elements |
container_volume | 29 |
creator | Denda, M. Mansukh, M. |
description | For piezoelectric cracks, the correct magnitudes of the electric induction intensity factors (EIFs) are obtained by the semi-permeable boundary condition (BC) the solution procedure of which is a non-linear iterative process that are not well established so far. We propose to use the impermeable and permeable BCs, although not correct, to obtain the upper and lower bounds of the EIFs using much simpler linear solution procedure by the boundary element method (BEM).
We develop a numerical Green's function approach based on the whole crack singular element (WCSE) for the general piezoelectric solids in two-dimensions. It is used for the mixed mode boundary element analysis of multiple straight cracks for impermeable and permeable BCs. The crack opening displacement (COD) of a straight crack is represented by the continuous distribution of dislocation dipoles, with the built-in
r
COD behavior, which is integrated analytically to give the
r
COD and the
1
/
r
crack tip stress singularity. The proposed numerical Green's function approach does not require the post-processing for the accurate determination of the stress intensity factors (SIFs). |
doi_str_mv | 10.1016/j.enganabound.2005.01.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28607308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799705000457</els_id><sourcerecordid>1082175153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-9691d7902fed8287fa8de7645e81e9344a9ae379f10f4fa66cd53483f99d9a3e3</originalsourceid><addsrcrecordid>eNqNkUFvFSEUhYmxic_a_4ALjZsZYZgZYKkvVZvUuGmT7giFi_LkwQiM5vnrpb6mujKu7snNd89J7kHoOSU9JXR-veshftZR36Y12n4gZOoJ7QmRj9CGCs46KvnNY7Qhcpo6LiV_gp6WsiOEMkLmDarXywIZ62hxSD-a-m1U2kKHQ_EFJ4chgKnZG-yjXU31KTZVIRZfD9hpU1Mu2KWM92uofgmAFw8_08OZydp8Lfj2gOsXwG_PPz5DJ06HAmf38xRdvzu_2n7oLj-9v9i-uezMSKfayVlSyyUZHFgxCO60sMDncQJBQbJx1FID49JR4kan59nYiY2COSmt1AzYKXp59F1y-rZCqWrvi4EQdIS0FjWImXBGRANf_ROkRAyUT3RiDZVH1ORUSganluz3Oh8apO4qUTv1VyXqrhJFqGqVtNsX9zG6GB1c1tH48sdgFozTeWrc9shBe853D1kV4yEasD63nyqb_H-k_QKjw6nU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082175153</pqid></control><display><type>article</type><title>Upper and lower bounds analysis of electric induction intensity factors for multiple piezoelectric cracks by the BEM</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Denda, M. ; Mansukh, M.</creator><creatorcontrib>Denda, M. ; Mansukh, M.</creatorcontrib><description>For piezoelectric cracks, the correct magnitudes of the electric induction intensity factors (EIFs) are obtained by the semi-permeable boundary condition (BC) the solution procedure of which is a non-linear iterative process that are not well established so far. We propose to use the impermeable and permeable BCs, although not correct, to obtain the upper and lower bounds of the EIFs using much simpler linear solution procedure by the boundary element method (BEM).
We develop a numerical Green's function approach based on the whole crack singular element (WCSE) for the general piezoelectric solids in two-dimensions. It is used for the mixed mode boundary element analysis of multiple straight cracks for impermeable and permeable BCs. The crack opening displacement (COD) of a straight crack is represented by the continuous distribution of dislocation dipoles, with the built-in
r
COD behavior, which is integrated analytically to give the
r
COD and the
1
/
r
crack tip stress singularity. The proposed numerical Green's function approach does not require the post-processing for the accurate determination of the stress intensity factors (SIFs).</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2005.01.009</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boundary element method ; Boundary-integral methods ; Computational techniques ; Crack opening displacement ; Cracks ; Electrically impermeable and permeable cracks ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Green's functions ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Numerical Green's function ; Physics ; Piezoelectricity ; Solid mechanics ; Structural and continuum mechanics ; Upper/lower bounds of electric induction intensity factor</subject><ispartof>Engineering analysis with boundary elements, 2005-06, Vol.29 (6), p.533-550</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-9691d7902fed8287fa8de7645e81e9344a9ae379f10f4fa66cd53483f99d9a3e3</citedby><cites>FETCH-LOGICAL-c415t-9691d7902fed8287fa8de7645e81e9344a9ae379f10f4fa66cd53483f99d9a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enganabound.2005.01.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16837165$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Denda, M.</creatorcontrib><creatorcontrib>Mansukh, M.</creatorcontrib><title>Upper and lower bounds analysis of electric induction intensity factors for multiple piezoelectric cracks by the BEM</title><title>Engineering analysis with boundary elements</title><description>For piezoelectric cracks, the correct magnitudes of the electric induction intensity factors (EIFs) are obtained by the semi-permeable boundary condition (BC) the solution procedure of which is a non-linear iterative process that are not well established so far. We propose to use the impermeable and permeable BCs, although not correct, to obtain the upper and lower bounds of the EIFs using much simpler linear solution procedure by the boundary element method (BEM).
We develop a numerical Green's function approach based on the whole crack singular element (WCSE) for the general piezoelectric solids in two-dimensions. It is used for the mixed mode boundary element analysis of multiple straight cracks for impermeable and permeable BCs. The crack opening displacement (COD) of a straight crack is represented by the continuous distribution of dislocation dipoles, with the built-in
r
COD behavior, which is integrated analytically to give the
r
COD and the
1
/
r
crack tip stress singularity. The proposed numerical Green's function approach does not require the post-processing for the accurate determination of the stress intensity factors (SIFs).</description><subject>Boundary element method</subject><subject>Boundary-integral methods</subject><subject>Computational techniques</subject><subject>Crack opening displacement</subject><subject>Cracks</subject><subject>Electrically impermeable and permeable cracks</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Green's functions</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Numerical Green's function</subject><subject>Physics</subject><subject>Piezoelectricity</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Upper/lower bounds of electric induction intensity factor</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkUFvFSEUhYmxic_a_4ALjZsZYZgZYKkvVZvUuGmT7giFi_LkwQiM5vnrpb6mujKu7snNd89J7kHoOSU9JXR-veshftZR36Y12n4gZOoJ7QmRj9CGCs46KvnNY7Qhcpo6LiV_gp6WsiOEMkLmDarXywIZ62hxSD-a-m1U2kKHQ_EFJ4chgKnZG-yjXU31KTZVIRZfD9hpU1Mu2KWM92uofgmAFw8_08OZydp8Lfj2gOsXwG_PPz5DJ06HAmf38xRdvzu_2n7oLj-9v9i-uezMSKfayVlSyyUZHFgxCO60sMDncQJBQbJx1FID49JR4kan59nYiY2COSmt1AzYKXp59F1y-rZCqWrvi4EQdIS0FjWImXBGRANf_ROkRAyUT3RiDZVH1ORUSganluz3Oh8apO4qUTv1VyXqrhJFqGqVtNsX9zG6GB1c1tH48sdgFozTeWrc9shBe853D1kV4yEasD63nyqb_H-k_QKjw6nU</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Denda, M.</creator><creator>Mansukh, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>JG9</scope></search><sort><creationdate>20050601</creationdate><title>Upper and lower bounds analysis of electric induction intensity factors for multiple piezoelectric cracks by the BEM</title><author>Denda, M. ; Mansukh, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-9691d7902fed8287fa8de7645e81e9344a9ae379f10f4fa66cd53483f99d9a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Boundary element method</topic><topic>Boundary-integral methods</topic><topic>Computational techniques</topic><topic>Crack opening displacement</topic><topic>Cracks</topic><topic>Electrically impermeable and permeable cracks</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Green's functions</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Numerical Green's function</topic><topic>Physics</topic><topic>Piezoelectricity</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Upper/lower bounds of electric induction intensity factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denda, M.</creatorcontrib><creatorcontrib>Mansukh, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Materials Research Database</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denda, M.</au><au>Mansukh, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper and lower bounds analysis of electric induction intensity factors for multiple piezoelectric cracks by the BEM</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>29</volume><issue>6</issue><spage>533</spage><epage>550</epage><pages>533-550</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>For piezoelectric cracks, the correct magnitudes of the electric induction intensity factors (EIFs) are obtained by the semi-permeable boundary condition (BC) the solution procedure of which is a non-linear iterative process that are not well established so far. We propose to use the impermeable and permeable BCs, although not correct, to obtain the upper and lower bounds of the EIFs using much simpler linear solution procedure by the boundary element method (BEM).
We develop a numerical Green's function approach based on the whole crack singular element (WCSE) for the general piezoelectric solids in two-dimensions. It is used for the mixed mode boundary element analysis of multiple straight cracks for impermeable and permeable BCs. The crack opening displacement (COD) of a straight crack is represented by the continuous distribution of dislocation dipoles, with the built-in
r
COD behavior, which is integrated analytically to give the
r
COD and the
1
/
r
crack tip stress singularity. The proposed numerical Green's function approach does not require the post-processing for the accurate determination of the stress intensity factors (SIFs).</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2005.01.009</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-7997 |
ispartof | Engineering analysis with boundary elements, 2005-06, Vol.29 (6), p.533-550 |
issn | 0955-7997 1873-197X |
language | eng |
recordid | cdi_proquest_miscellaneous_28607308 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Boundary element method Boundary-integral methods Computational techniques Crack opening displacement Cracks Electrically impermeable and permeable cracks Exact sciences and technology Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Green's functions Mathematical analysis Mathematical methods in physics Mathematical models Numerical Green's function Physics Piezoelectricity Solid mechanics Structural and continuum mechanics Upper/lower bounds of electric induction intensity factor |
title | Upper and lower bounds analysis of electric induction intensity factors for multiple piezoelectric cracks by the BEM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20and%20lower%20bounds%20analysis%20of%20electric%20induction%20intensity%20factors%20for%20multiple%20piezoelectric%20cracks%20by%20the%20BEM&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Denda,%20M.&rft.date=2005-06-01&rft.volume=29&rft.issue=6&rft.spage=533&rft.epage=550&rft.pages=533-550&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2005.01.009&rft_dat=%3Cproquest_cross%3E1082175153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082175153&rft_id=info:pmid/&rft_els_id=S0955799705000457&rfr_iscdi=true |