Upper and lower bounds analysis of electric induction intensity factors for multiple piezoelectric cracks by the BEM

For piezoelectric cracks, the correct magnitudes of the electric induction intensity factors (EIFs) are obtained by the semi-permeable boundary condition (BC) the solution procedure of which is a non-linear iterative process that are not well established so far. We propose to use the impermeable and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering analysis with boundary elements 2005-06, Vol.29 (6), p.533-550
Hauptverfasser: Denda, M., Mansukh, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 550
container_issue 6
container_start_page 533
container_title Engineering analysis with boundary elements
container_volume 29
creator Denda, M.
Mansukh, M.
description For piezoelectric cracks, the correct magnitudes of the electric induction intensity factors (EIFs) are obtained by the semi-permeable boundary condition (BC) the solution procedure of which is a non-linear iterative process that are not well established so far. We propose to use the impermeable and permeable BCs, although not correct, to obtain the upper and lower bounds of the EIFs using much simpler linear solution procedure by the boundary element method (BEM). We develop a numerical Green's function approach based on the whole crack singular element (WCSE) for the general piezoelectric solids in two-dimensions. It is used for the mixed mode boundary element analysis of multiple straight cracks for impermeable and permeable BCs. The crack opening displacement (COD) of a straight crack is represented by the continuous distribution of dislocation dipoles, with the built-in r COD behavior, which is integrated analytically to give the r COD and the 1 / r crack tip stress singularity. The proposed numerical Green's function approach does not require the post-processing for the accurate determination of the stress intensity factors (SIFs).
doi_str_mv 10.1016/j.enganabound.2005.01.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28607308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799705000457</els_id><sourcerecordid>1082175153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-9691d7902fed8287fa8de7645e81e9344a9ae379f10f4fa66cd53483f99d9a3e3</originalsourceid><addsrcrecordid>eNqNkUFvFSEUhYmxic_a_4ALjZsZYZgZYKkvVZvUuGmT7giFi_LkwQiM5vnrpb6mujKu7snNd89J7kHoOSU9JXR-veshftZR36Y12n4gZOoJ7QmRj9CGCs46KvnNY7Qhcpo6LiV_gp6WsiOEMkLmDarXywIZ62hxSD-a-m1U2kKHQ_EFJ4chgKnZG-yjXU31KTZVIRZfD9hpU1Mu2KWM92uofgmAFw8_08OZydp8Lfj2gOsXwG_PPz5DJ06HAmf38xRdvzu_2n7oLj-9v9i-uezMSKfayVlSyyUZHFgxCO60sMDncQJBQbJx1FID49JR4kan59nYiY2COSmt1AzYKXp59F1y-rZCqWrvi4EQdIS0FjWImXBGRANf_ROkRAyUT3RiDZVH1ORUSganluz3Oh8apO4qUTv1VyXqrhJFqGqVtNsX9zG6GB1c1tH48sdgFozTeWrc9shBe853D1kV4yEasD63nyqb_H-k_QKjw6nU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082175153</pqid></control><display><type>article</type><title>Upper and lower bounds analysis of electric induction intensity factors for multiple piezoelectric cracks by the BEM</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Denda, M. ; Mansukh, M.</creator><creatorcontrib>Denda, M. ; Mansukh, M.</creatorcontrib><description>For piezoelectric cracks, the correct magnitudes of the electric induction intensity factors (EIFs) are obtained by the semi-permeable boundary condition (BC) the solution procedure of which is a non-linear iterative process that are not well established so far. We propose to use the impermeable and permeable BCs, although not correct, to obtain the upper and lower bounds of the EIFs using much simpler linear solution procedure by the boundary element method (BEM). We develop a numerical Green's function approach based on the whole crack singular element (WCSE) for the general piezoelectric solids in two-dimensions. It is used for the mixed mode boundary element analysis of multiple straight cracks for impermeable and permeable BCs. The crack opening displacement (COD) of a straight crack is represented by the continuous distribution of dislocation dipoles, with the built-in r COD behavior, which is integrated analytically to give the r COD and the 1 / r crack tip stress singularity. The proposed numerical Green's function approach does not require the post-processing for the accurate determination of the stress intensity factors (SIFs).</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2005.01.009</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boundary element method ; Boundary-integral methods ; Computational techniques ; Crack opening displacement ; Cracks ; Electrically impermeable and permeable cracks ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Green's functions ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Numerical Green's function ; Physics ; Piezoelectricity ; Solid mechanics ; Structural and continuum mechanics ; Upper/lower bounds of electric induction intensity factor</subject><ispartof>Engineering analysis with boundary elements, 2005-06, Vol.29 (6), p.533-550</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-9691d7902fed8287fa8de7645e81e9344a9ae379f10f4fa66cd53483f99d9a3e3</citedby><cites>FETCH-LOGICAL-c415t-9691d7902fed8287fa8de7645e81e9344a9ae379f10f4fa66cd53483f99d9a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enganabound.2005.01.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16837165$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Denda, M.</creatorcontrib><creatorcontrib>Mansukh, M.</creatorcontrib><title>Upper and lower bounds analysis of electric induction intensity factors for multiple piezoelectric cracks by the BEM</title><title>Engineering analysis with boundary elements</title><description>For piezoelectric cracks, the correct magnitudes of the electric induction intensity factors (EIFs) are obtained by the semi-permeable boundary condition (BC) the solution procedure of which is a non-linear iterative process that are not well established so far. We propose to use the impermeable and permeable BCs, although not correct, to obtain the upper and lower bounds of the EIFs using much simpler linear solution procedure by the boundary element method (BEM). We develop a numerical Green's function approach based on the whole crack singular element (WCSE) for the general piezoelectric solids in two-dimensions. It is used for the mixed mode boundary element analysis of multiple straight cracks for impermeable and permeable BCs. The crack opening displacement (COD) of a straight crack is represented by the continuous distribution of dislocation dipoles, with the built-in r COD behavior, which is integrated analytically to give the r COD and the 1 / r crack tip stress singularity. The proposed numerical Green's function approach does not require the post-processing for the accurate determination of the stress intensity factors (SIFs).</description><subject>Boundary element method</subject><subject>Boundary-integral methods</subject><subject>Computational techniques</subject><subject>Crack opening displacement</subject><subject>Cracks</subject><subject>Electrically impermeable and permeable cracks</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Green's functions</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Numerical Green's function</subject><subject>Physics</subject><subject>Piezoelectricity</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Upper/lower bounds of electric induction intensity factor</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkUFvFSEUhYmxic_a_4ALjZsZYZgZYKkvVZvUuGmT7giFi_LkwQiM5vnrpb6mujKu7snNd89J7kHoOSU9JXR-veshftZR36Y12n4gZOoJ7QmRj9CGCs46KvnNY7Qhcpo6LiV_gp6WsiOEMkLmDarXywIZ62hxSD-a-m1U2kKHQ_EFJ4chgKnZG-yjXU31KTZVIRZfD9hpU1Mu2KWM92uofgmAFw8_08OZydp8Lfj2gOsXwG_PPz5DJ06HAmf38xRdvzu_2n7oLj-9v9i-uezMSKfayVlSyyUZHFgxCO60sMDncQJBQbJx1FID49JR4kan59nYiY2COSmt1AzYKXp59F1y-rZCqWrvi4EQdIS0FjWImXBGRANf_ROkRAyUT3RiDZVH1ORUSganluz3Oh8apO4qUTv1VyXqrhJFqGqVtNsX9zG6GB1c1tH48sdgFozTeWrc9shBe853D1kV4yEasD63nyqb_H-k_QKjw6nU</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Denda, M.</creator><creator>Mansukh, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>JG9</scope></search><sort><creationdate>20050601</creationdate><title>Upper and lower bounds analysis of electric induction intensity factors for multiple piezoelectric cracks by the BEM</title><author>Denda, M. ; Mansukh, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-9691d7902fed8287fa8de7645e81e9344a9ae379f10f4fa66cd53483f99d9a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Boundary element method</topic><topic>Boundary-integral methods</topic><topic>Computational techniques</topic><topic>Crack opening displacement</topic><topic>Cracks</topic><topic>Electrically impermeable and permeable cracks</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Green's functions</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Numerical Green's function</topic><topic>Physics</topic><topic>Piezoelectricity</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Upper/lower bounds of electric induction intensity factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denda, M.</creatorcontrib><creatorcontrib>Mansukh, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Materials Research Database</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denda, M.</au><au>Mansukh, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper and lower bounds analysis of electric induction intensity factors for multiple piezoelectric cracks by the BEM</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>29</volume><issue>6</issue><spage>533</spage><epage>550</epage><pages>533-550</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>For piezoelectric cracks, the correct magnitudes of the electric induction intensity factors (EIFs) are obtained by the semi-permeable boundary condition (BC) the solution procedure of which is a non-linear iterative process that are not well established so far. We propose to use the impermeable and permeable BCs, although not correct, to obtain the upper and lower bounds of the EIFs using much simpler linear solution procedure by the boundary element method (BEM). We develop a numerical Green's function approach based on the whole crack singular element (WCSE) for the general piezoelectric solids in two-dimensions. It is used for the mixed mode boundary element analysis of multiple straight cracks for impermeable and permeable BCs. The crack opening displacement (COD) of a straight crack is represented by the continuous distribution of dislocation dipoles, with the built-in r COD behavior, which is integrated analytically to give the r COD and the 1 / r crack tip stress singularity. The proposed numerical Green's function approach does not require the post-processing for the accurate determination of the stress intensity factors (SIFs).</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2005.01.009</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-7997
ispartof Engineering analysis with boundary elements, 2005-06, Vol.29 (6), p.533-550
issn 0955-7997
1873-197X
language eng
recordid cdi_proquest_miscellaneous_28607308
source ScienceDirect Journals (5 years ago - present)
subjects Boundary element method
Boundary-integral methods
Computational techniques
Crack opening displacement
Cracks
Electrically impermeable and permeable cracks
Exact sciences and technology
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Green's functions
Mathematical analysis
Mathematical methods in physics
Mathematical models
Numerical Green's function
Physics
Piezoelectricity
Solid mechanics
Structural and continuum mechanics
Upper/lower bounds of electric induction intensity factor
title Upper and lower bounds analysis of electric induction intensity factors for multiple piezoelectric cracks by the BEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20and%20lower%20bounds%20analysis%20of%20electric%20induction%20intensity%20factors%20for%20multiple%20piezoelectric%20cracks%20by%20the%20BEM&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Denda,%20M.&rft.date=2005-06-01&rft.volume=29&rft.issue=6&rft.spage=533&rft.epage=550&rft.pages=533-550&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2005.01.009&rft_dat=%3Cproquest_cross%3E1082175153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082175153&rft_id=info:pmid/&rft_els_id=S0955799705000457&rfr_iscdi=true