Improving algal bloom detection using spectroscopic analysis and machine learning: A case study in a large artificial reservoir, South Korea
The prediction of algal blooms using traditional water quality indicators is expensive, labor-intensive, and time-consuming, making it challenging to meet the critical requirement of timely monitoring for prompt management. Using optical measures for forecasting algal blooms is a feasible and useful...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2023-11, Vol.901, p.166467-166467, Article 166467 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!