Improving algal bloom detection using spectroscopic analysis and machine learning: A case study in a large artificial reservoir, South Korea

The prediction of algal blooms using traditional water quality indicators is expensive, labor-intensive, and time-consuming, making it challenging to meet the critical requirement of timely monitoring for prompt management. Using optical measures for forecasting algal blooms is a feasible and useful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-11, Vol.901, p.166467-166467, Article 166467
Hauptverfasser: Ly, Quang Viet, Tong, Ngoc Anh, Lee, Bo-Mi, Nguyen, Minh Hieu, Trung, Huynh Thanh, Le Nguyen, Phi, Hoang, Thu-Huong T., Hwang, Yuhoon, Hur, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!