Full-range stress–strain curve estimation of aluminum alloys using machine learning-aided ultrasound

•Stress–strain curve of materials can be estimated using ultrasound and machine learning.•Performance experimentally validated using five-hundreds Al alloys specimens.•Correlations between ultrasonic and mechanical properties enable accurate estimation.•New applications such as inline SS-curve estim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonics 2023-12, Vol.135, p.107146-107146, Article 107146
Hauptverfasser: Park, Seong-Hyun, Chung, Junyeon, Yi, Kiyoon, Sohn, Hoon, Jhang, Kyung-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107146
container_issue
container_start_page 107146
container_title Ultrasonics
container_volume 135
creator Park, Seong-Hyun
Chung, Junyeon
Yi, Kiyoon
Sohn, Hoon
Jhang, Kyung-Young
description •Stress–strain curve of materials can be estimated using ultrasound and machine learning.•Performance experimentally validated using five-hundreds Al alloys specimens.•Correlations between ultrasonic and mechanical properties enable accurate estimation.•New applications such as inline SS-curve estimation are possible. Full-range stress–strain (SS) curves are crucial in understanding mechanical properties of a material such as the yield strength, ultimate tensile strength, and elongation. In this study, a full-range SS-curve was nondestructively estimated by applying machine learning to the ultrasonic amplitude-scan signal propagated through the material. The performance of the developed technique was validated using five-hundred aluminum alloy specimens with a wide spectrum of mechanical properties. The analyses of various ultrasonic properties, including nonlinearity and attenuation, with respect to the elements in the SS curves revealed how ultrasonics can be used to predict the SS curves without conventional destructive tensile testing. The proposed technique has significant potential for new applications in the fields of materials science and engineering, such as inline SS curve estimation during manufacturing.
doi_str_mv 10.1016/j.ultras.2023.107146
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2860407343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X23002226</els_id><sourcerecordid>2860407343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-83fa9967f21e6b540bafe6486c388460c1a583f245c643b67cf07bebee4321bf3</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrf6Bhxy9bE02aXZ7EaRYFQpeFLyFbPalpmSzNdkUevMf_EO_xJT17OkNj5lhZhC6pmRGCRW321lyQ1BxVpKS5VdFuThBE1pXvFgsRH2KJoRwWoiSv5-jixi3hFBeUzZBZpWcK4LyG8BxCBDjz9d3Bsp6rFPYA4Y42E4Ntve4N1i51Fmfugxcf4g4Res3uFP6w3rADlTw-VEo20KLx1R98u0lOjPKRbj6u1P0tnp4XT4V65fH5-X9utCczIeiZkblwJUpKYhmzkmjDAheC83qmguiqZpnTsnnWnDWiEobUjXQAHBW0sawKboZfXeh_0w5uuxs1OCc8tCnKMtaEE4qxlmm8pGqQx9jACN3IRcNB0mJPM4qt3IsII-zynHWLLsbZZBr7C0EGbUFr6G1AfQg297-b_ALkeSGLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860407343</pqid></control><display><type>article</type><title>Full-range stress–strain curve estimation of aluminum alloys using machine learning-aided ultrasound</title><source>Elsevier ScienceDirect Journals</source><creator>Park, Seong-Hyun ; Chung, Junyeon ; Yi, Kiyoon ; Sohn, Hoon ; Jhang, Kyung-Young</creator><creatorcontrib>Park, Seong-Hyun ; Chung, Junyeon ; Yi, Kiyoon ; Sohn, Hoon ; Jhang, Kyung-Young</creatorcontrib><description>•Stress–strain curve of materials can be estimated using ultrasound and machine learning.•Performance experimentally validated using five-hundreds Al alloys specimens.•Correlations between ultrasonic and mechanical properties enable accurate estimation.•New applications such as inline SS-curve estimation are possible. Full-range stress–strain (SS) curves are crucial in understanding mechanical properties of a material such as the yield strength, ultimate tensile strength, and elongation. In this study, a full-range SS-curve was nondestructively estimated by applying machine learning to the ultrasonic amplitude-scan signal propagated through the material. The performance of the developed technique was validated using five-hundred aluminum alloy specimens with a wide spectrum of mechanical properties. The analyses of various ultrasonic properties, including nonlinearity and attenuation, with respect to the elements in the SS curves revealed how ultrasonics can be used to predict the SS curves without conventional destructive tensile testing. The proposed technique has significant potential for new applications in the fields of materials science and engineering, such as inline SS curve estimation during manufacturing.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/j.ultras.2023.107146</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Machine learning ; Nondestructive testing ; Stress–strain curve ; Ultrasonic tensile testing</subject><ispartof>Ultrasonics, 2023-12, Vol.135, p.107146-107146, Article 107146</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-83fa9967f21e6b540bafe6486c388460c1a583f245c643b67cf07bebee4321bf3</citedby><cites>FETCH-LOGICAL-c405t-83fa9967f21e6b540bafe6486c388460c1a583f245c643b67cf07bebee4321bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultras.2023.107146$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Park, Seong-Hyun</creatorcontrib><creatorcontrib>Chung, Junyeon</creatorcontrib><creatorcontrib>Yi, Kiyoon</creatorcontrib><creatorcontrib>Sohn, Hoon</creatorcontrib><creatorcontrib>Jhang, Kyung-Young</creatorcontrib><title>Full-range stress–strain curve estimation of aluminum alloys using machine learning-aided ultrasound</title><title>Ultrasonics</title><description>•Stress–strain curve of materials can be estimated using ultrasound and machine learning.•Performance experimentally validated using five-hundreds Al alloys specimens.•Correlations between ultrasonic and mechanical properties enable accurate estimation.•New applications such as inline SS-curve estimation are possible. Full-range stress–strain (SS) curves are crucial in understanding mechanical properties of a material such as the yield strength, ultimate tensile strength, and elongation. In this study, a full-range SS-curve was nondestructively estimated by applying machine learning to the ultrasonic amplitude-scan signal propagated through the material. The performance of the developed technique was validated using five-hundred aluminum alloy specimens with a wide spectrum of mechanical properties. The analyses of various ultrasonic properties, including nonlinearity and attenuation, with respect to the elements in the SS curves revealed how ultrasonics can be used to predict the SS curves without conventional destructive tensile testing. The proposed technique has significant potential for new applications in the fields of materials science and engineering, such as inline SS curve estimation during manufacturing.</description><subject>Machine learning</subject><subject>Nondestructive testing</subject><subject>Stress–strain curve</subject><subject>Ultrasonic tensile testing</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEUDKJgrf6Bhxy9bE02aXZ7EaRYFQpeFLyFbPalpmSzNdkUevMf_EO_xJT17OkNj5lhZhC6pmRGCRW321lyQ1BxVpKS5VdFuThBE1pXvFgsRH2KJoRwWoiSv5-jixi3hFBeUzZBZpWcK4LyG8BxCBDjz9d3Bsp6rFPYA4Y42E4Ntve4N1i51Fmfugxcf4g4Res3uFP6w3rADlTw-VEo20KLx1R98u0lOjPKRbj6u1P0tnp4XT4V65fH5-X9utCczIeiZkblwJUpKYhmzkmjDAheC83qmguiqZpnTsnnWnDWiEobUjXQAHBW0sawKboZfXeh_0w5uuxs1OCc8tCnKMtaEE4qxlmm8pGqQx9jACN3IRcNB0mJPM4qt3IsII-zynHWLLsbZZBr7C0EGbUFr6G1AfQg297-b_ALkeSGLg</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Park, Seong-Hyun</creator><creator>Chung, Junyeon</creator><creator>Yi, Kiyoon</creator><creator>Sohn, Hoon</creator><creator>Jhang, Kyung-Young</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202312</creationdate><title>Full-range stress–strain curve estimation of aluminum alloys using machine learning-aided ultrasound</title><author>Park, Seong-Hyun ; Chung, Junyeon ; Yi, Kiyoon ; Sohn, Hoon ; Jhang, Kyung-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-83fa9967f21e6b540bafe6486c388460c1a583f245c643b67cf07bebee4321bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Machine learning</topic><topic>Nondestructive testing</topic><topic>Stress–strain curve</topic><topic>Ultrasonic tensile testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Seong-Hyun</creatorcontrib><creatorcontrib>Chung, Junyeon</creatorcontrib><creatorcontrib>Yi, Kiyoon</creatorcontrib><creatorcontrib>Sohn, Hoon</creatorcontrib><creatorcontrib>Jhang, Kyung-Young</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Seong-Hyun</au><au>Chung, Junyeon</au><au>Yi, Kiyoon</au><au>Sohn, Hoon</au><au>Jhang, Kyung-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full-range stress–strain curve estimation of aluminum alloys using machine learning-aided ultrasound</atitle><jtitle>Ultrasonics</jtitle><date>2023-12</date><risdate>2023</risdate><volume>135</volume><spage>107146</spage><epage>107146</epage><pages>107146-107146</pages><artnum>107146</artnum><issn>0041-624X</issn><eissn>1874-9968</eissn><abstract>•Stress–strain curve of materials can be estimated using ultrasound and machine learning.•Performance experimentally validated using five-hundreds Al alloys specimens.•Correlations between ultrasonic and mechanical properties enable accurate estimation.•New applications such as inline SS-curve estimation are possible. Full-range stress–strain (SS) curves are crucial in understanding mechanical properties of a material such as the yield strength, ultimate tensile strength, and elongation. In this study, a full-range SS-curve was nondestructively estimated by applying machine learning to the ultrasonic amplitude-scan signal propagated through the material. The performance of the developed technique was validated using five-hundred aluminum alloy specimens with a wide spectrum of mechanical properties. The analyses of various ultrasonic properties, including nonlinearity and attenuation, with respect to the elements in the SS curves revealed how ultrasonics can be used to predict the SS curves without conventional destructive tensile testing. The proposed technique has significant potential for new applications in the fields of materials science and engineering, such as inline SS curve estimation during manufacturing.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ultras.2023.107146</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-624X
ispartof Ultrasonics, 2023-12, Vol.135, p.107146-107146, Article 107146
issn 0041-624X
1874-9968
language eng
recordid cdi_proquest_miscellaneous_2860407343
source Elsevier ScienceDirect Journals
subjects Machine learning
Nondestructive testing
Stress–strain curve
Ultrasonic tensile testing
title Full-range stress–strain curve estimation of aluminum alloys using machine learning-aided ultrasound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full-range%20stress%E2%80%93strain%20curve%20estimation%20of%20aluminum%20alloys%20using%20machine%20learning-aided%20ultrasound&rft.jtitle=Ultrasonics&rft.au=Park,%20Seong-Hyun&rft.date=2023-12&rft.volume=135&rft.spage=107146&rft.epage=107146&rft.pages=107146-107146&rft.artnum=107146&rft.issn=0041-624X&rft.eissn=1874-9968&rft_id=info:doi/10.1016/j.ultras.2023.107146&rft_dat=%3Cproquest_cross%3E2860407343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2860407343&rft_id=info:pmid/&rft_els_id=S0041624X23002226&rfr_iscdi=true