Unravelling the effect of paramagnetic Ni2+ on the 13C NMR shift tensor for carbonate in Mg2−xNixAl layered double hydroxides by quantum-chemical computations
Structural disorder and low crystallinity render it challenging to characterise the atomic-level structure of layered double hydroxides (LDH). We report a novel multi-step, first-principles computational workflow for the analysis of paramagnetic solid-state NMR of complex inorganic systems such as L...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-09, Vol.25 (35), p.24081-24096 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24096 |
---|---|
container_issue | 35 |
container_start_page | 24081 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Mohan, Megha Andersen, Anders B A Mareš, Jiří Nicholai Daugaard Jensen Ulla Gro Nielsen Vaara, Juha |
description | Structural disorder and low crystallinity render it challenging to characterise the atomic-level structure of layered double hydroxides (LDH). We report a novel multi-step, first-principles computational workflow for the analysis of paramagnetic solid-state NMR of complex inorganic systems such as LDH, which are commonly used as catalysts and energy storage materials. A series of 13CO32−-labelled Mg2−xNixAl-LDH, x ranging from 0 (Mg2Al-LDH) to 2 (Ni2Al-LDH), features three distinct eigenvalues δ11, δ22 and δ33 of the experimental 13C chemical shift tensor. The δii correlate directly with the concentration of the paramagnetic Ni2+ and span a range of |δ11 − δ33| ≈ 90 ppm at x = 0, increasing to 950 ppm at x = 2. In contrast, the isotropic shift, δiso(13C), only varies by −14 ppm in the series. Detailed insight is obtained by computing (1) the orbital shielding by periodic density-functional theory involving interlayer water, (2) the long-range pseudocontact contribution of the randomly distributed Ni2+ ions in the cation layers (characterised by an ab initio susceptibility tensor) by a lattice sum, and (3) the close-range hyperfine terms using a full first-principles shielding machinery. A pseudohydrogen-terminated two-layer cluster model is used to compute (3), particularly the contact terms. Due to negative spin density contribution at the 13C site arising from the close-by Ni2+ sites, this step is necessary to reach a semiquantitative agreement with experiment. These findings influence future NMR investigations of the formally closed-shell interlayer species within LDH, such as the anions or water. Furthermore, the workflow is applicable to a variety of complex materials. |
doi_str_mv | 10.1039/d3cp03053a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2860405443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860405443</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-fe519ea05a60db0d71aea86b06a95d39df4dded65ee09908091ff5ebab0ba2993</originalsourceid><addsrcrecordid>eNpdkMFq20AQhkVooK6TS55gIJdCUDPr1creYzBpUkgcKPU5jLSz9gZpV9augv0GPecJ-mx5kqpNyaGHYebwMfz_l2VnAr8IlPrSyLpDiUrSUTYRRSlzjYviw_s9Lz9mn2J8QkShhJxkv9a-p2duGuc3kLYMbC3XCYKFjnpqaeM5uRpWbnYBwf9FhFzC6v47xK2zCRL7GHqw49TUV8FTYnAe7jez158v-5XbXzXQ0IF7NmDCUDUM24Ppw94ZjlAdYDeQT0Ob11tuXU0N1KHthkTJBR9PsmNLTeTTf3uarb9e_1je5ncPN9-WV3d5N1ZLuWUlNBMqKtFUaOaCmBZlhSVpZaQ2tjCGTamYUY9OUAtrFVdUYUUzreU0-_z2t-vDbuCYHlsX61EMeQ5DfJwtSixQFYUc0fP_0Kcw9H5M94cqCjUf1crfyFB88g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864457513</pqid></control><display><type>article</type><title>Unravelling the effect of paramagnetic Ni2+ on the 13C NMR shift tensor for carbonate in Mg2−xNixAl layered double hydroxides by quantum-chemical computations</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mohan, Megha ; Andersen, Anders B A ; Mareš, Jiří ; Nicholai Daugaard Jensen ; Ulla Gro Nielsen ; Vaara, Juha</creator><creatorcontrib>Mohan, Megha ; Andersen, Anders B A ; Mareš, Jiří ; Nicholai Daugaard Jensen ; Ulla Gro Nielsen ; Vaara, Juha</creatorcontrib><description>Structural disorder and low crystallinity render it challenging to characterise the atomic-level structure of layered double hydroxides (LDH). We report a novel multi-step, first-principles computational workflow for the analysis of paramagnetic solid-state NMR of complex inorganic systems such as LDH, which are commonly used as catalysts and energy storage materials. A series of 13CO32−-labelled Mg2−xNixAl-LDH, x ranging from 0 (Mg2Al-LDH) to 2 (Ni2Al-LDH), features three distinct eigenvalues δ11, δ22 and δ33 of the experimental 13C chemical shift tensor. The δii correlate directly with the concentration of the paramagnetic Ni2+ and span a range of |δ11 − δ33| ≈ 90 ppm at x = 0, increasing to 950 ppm at x = 2. In contrast, the isotropic shift, δiso(13C), only varies by −14 ppm in the series. Detailed insight is obtained by computing (1) the orbital shielding by periodic density-functional theory involving interlayer water, (2) the long-range pseudocontact contribution of the randomly distributed Ni2+ ions in the cation layers (characterised by an ab initio susceptibility tensor) by a lattice sum, and (3) the close-range hyperfine terms using a full first-principles shielding machinery. A pseudohydrogen-terminated two-layer cluster model is used to compute (3), particularly the contact terms. Due to negative spin density contribution at the 13C site arising from the close-by Ni2+ sites, this step is necessary to reach a semiquantitative agreement with experiment. These findings influence future NMR investigations of the formally closed-shell interlayer species within LDH, such as the anions or water. Furthermore, the workflow is applicable to a variety of complex materials.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp03053a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atomic structure ; Chemical equilibrium ; Density functional theory ; Eigenvalues ; Energy storage ; First principles ; Hydroxides ; Interlayers ; Mathematical analysis ; NMR ; Nuclear magnetic resonance ; Quantum chemistry ; Shielding ; Tensors ; Workflow</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-09, Vol.25 (35), p.24081-24096</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mohan, Megha</creatorcontrib><creatorcontrib>Andersen, Anders B A</creatorcontrib><creatorcontrib>Mareš, Jiří</creatorcontrib><creatorcontrib>Nicholai Daugaard Jensen</creatorcontrib><creatorcontrib>Ulla Gro Nielsen</creatorcontrib><creatorcontrib>Vaara, Juha</creatorcontrib><title>Unravelling the effect of paramagnetic Ni2+ on the 13C NMR shift tensor for carbonate in Mg2−xNixAl layered double hydroxides by quantum-chemical computations</title><title>Physical chemistry chemical physics : PCCP</title><description>Structural disorder and low crystallinity render it challenging to characterise the atomic-level structure of layered double hydroxides (LDH). We report a novel multi-step, first-principles computational workflow for the analysis of paramagnetic solid-state NMR of complex inorganic systems such as LDH, which are commonly used as catalysts and energy storage materials. A series of 13CO32−-labelled Mg2−xNixAl-LDH, x ranging from 0 (Mg2Al-LDH) to 2 (Ni2Al-LDH), features three distinct eigenvalues δ11, δ22 and δ33 of the experimental 13C chemical shift tensor. The δii correlate directly with the concentration of the paramagnetic Ni2+ and span a range of |δ11 − δ33| ≈ 90 ppm at x = 0, increasing to 950 ppm at x = 2. In contrast, the isotropic shift, δiso(13C), only varies by −14 ppm in the series. Detailed insight is obtained by computing (1) the orbital shielding by periodic density-functional theory involving interlayer water, (2) the long-range pseudocontact contribution of the randomly distributed Ni2+ ions in the cation layers (characterised by an ab initio susceptibility tensor) by a lattice sum, and (3) the close-range hyperfine terms using a full first-principles shielding machinery. A pseudohydrogen-terminated two-layer cluster model is used to compute (3), particularly the contact terms. Due to negative spin density contribution at the 13C site arising from the close-by Ni2+ sites, this step is necessary to reach a semiquantitative agreement with experiment. These findings influence future NMR investigations of the formally closed-shell interlayer species within LDH, such as the anions or water. Furthermore, the workflow is applicable to a variety of complex materials.</description><subject>Atomic structure</subject><subject>Chemical equilibrium</subject><subject>Density functional theory</subject><subject>Eigenvalues</subject><subject>Energy storage</subject><subject>First principles</subject><subject>Hydroxides</subject><subject>Interlayers</subject><subject>Mathematical analysis</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Quantum chemistry</subject><subject>Shielding</subject><subject>Tensors</subject><subject>Workflow</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkMFq20AQhkVooK6TS55gIJdCUDPr1creYzBpUkgcKPU5jLSz9gZpV9augv0GPecJ-mx5kqpNyaGHYebwMfz_l2VnAr8IlPrSyLpDiUrSUTYRRSlzjYviw_s9Lz9mn2J8QkShhJxkv9a-p2duGuc3kLYMbC3XCYKFjnpqaeM5uRpWbnYBwf9FhFzC6v47xK2zCRL7GHqw49TUV8FTYnAe7jez158v-5XbXzXQ0IF7NmDCUDUM24Ppw94ZjlAdYDeQT0Ob11tuXU0N1KHthkTJBR9PsmNLTeTTf3uarb9e_1je5ncPN9-WV3d5N1ZLuWUlNBMqKtFUaOaCmBZlhSVpZaQ2tjCGTamYUY9OUAtrFVdUYUUzreU0-_z2t-vDbuCYHlsX61EMeQ5DfJwtSixQFYUc0fP_0Kcw9H5M94cqCjUf1crfyFB88g</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Mohan, Megha</creator><creator>Andersen, Anders B A</creator><creator>Mareš, Jiří</creator><creator>Nicholai Daugaard Jensen</creator><creator>Ulla Gro Nielsen</creator><creator>Vaara, Juha</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20230913</creationdate><title>Unravelling the effect of paramagnetic Ni2+ on the 13C NMR shift tensor for carbonate in Mg2−xNixAl layered double hydroxides by quantum-chemical computations</title><author>Mohan, Megha ; Andersen, Anders B A ; Mareš, Jiří ; Nicholai Daugaard Jensen ; Ulla Gro Nielsen ; Vaara, Juha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-fe519ea05a60db0d71aea86b06a95d39df4dded65ee09908091ff5ebab0ba2993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic structure</topic><topic>Chemical equilibrium</topic><topic>Density functional theory</topic><topic>Eigenvalues</topic><topic>Energy storage</topic><topic>First principles</topic><topic>Hydroxides</topic><topic>Interlayers</topic><topic>Mathematical analysis</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Quantum chemistry</topic><topic>Shielding</topic><topic>Tensors</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohan, Megha</creatorcontrib><creatorcontrib>Andersen, Anders B A</creatorcontrib><creatorcontrib>Mareš, Jiří</creatorcontrib><creatorcontrib>Nicholai Daugaard Jensen</creatorcontrib><creatorcontrib>Ulla Gro Nielsen</creatorcontrib><creatorcontrib>Vaara, Juha</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohan, Megha</au><au>Andersen, Anders B A</au><au>Mareš, Jiří</au><au>Nicholai Daugaard Jensen</au><au>Ulla Gro Nielsen</au><au>Vaara, Juha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling the effect of paramagnetic Ni2+ on the 13C NMR shift tensor for carbonate in Mg2−xNixAl layered double hydroxides by quantum-chemical computations</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-09-13</date><risdate>2023</risdate><volume>25</volume><issue>35</issue><spage>24081</spage><epage>24096</epage><pages>24081-24096</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Structural disorder and low crystallinity render it challenging to characterise the atomic-level structure of layered double hydroxides (LDH). We report a novel multi-step, first-principles computational workflow for the analysis of paramagnetic solid-state NMR of complex inorganic systems such as LDH, which are commonly used as catalysts and energy storage materials. A series of 13CO32−-labelled Mg2−xNixAl-LDH, x ranging from 0 (Mg2Al-LDH) to 2 (Ni2Al-LDH), features three distinct eigenvalues δ11, δ22 and δ33 of the experimental 13C chemical shift tensor. The δii correlate directly with the concentration of the paramagnetic Ni2+ and span a range of |δ11 − δ33| ≈ 90 ppm at x = 0, increasing to 950 ppm at x = 2. In contrast, the isotropic shift, δiso(13C), only varies by −14 ppm in the series. Detailed insight is obtained by computing (1) the orbital shielding by periodic density-functional theory involving interlayer water, (2) the long-range pseudocontact contribution of the randomly distributed Ni2+ ions in the cation layers (characterised by an ab initio susceptibility tensor) by a lattice sum, and (3) the close-range hyperfine terms using a full first-principles shielding machinery. A pseudohydrogen-terminated two-layer cluster model is used to compute (3), particularly the contact terms. Due to negative spin density contribution at the 13C site arising from the close-by Ni2+ sites, this step is necessary to reach a semiquantitative agreement with experiment. These findings influence future NMR investigations of the formally closed-shell interlayer species within LDH, such as the anions or water. Furthermore, the workflow is applicable to a variety of complex materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp03053a</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-09, Vol.25 (35), p.24081-24096 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2860405443 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Atomic structure Chemical equilibrium Density functional theory Eigenvalues Energy storage First principles Hydroxides Interlayers Mathematical analysis NMR Nuclear magnetic resonance Quantum chemistry Shielding Tensors Workflow |
title | Unravelling the effect of paramagnetic Ni2+ on the 13C NMR shift tensor for carbonate in Mg2−xNixAl layered double hydroxides by quantum-chemical computations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20the%20effect%20of%20paramagnetic%20Ni2+%20on%20the%2013C%20NMR%20shift%20tensor%20for%20carbonate%20in%20Mg2%E2%88%92xNixAl%20layered%20double%20hydroxides%20by%20quantum-chemical%20computations&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Mohan,%20Megha&rft.date=2023-09-13&rft.volume=25&rft.issue=35&rft.spage=24081&rft.epage=24096&rft.pages=24081-24096&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp03053a&rft_dat=%3Cproquest%3E2860405443%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864457513&rft_id=info:pmid/&rfr_iscdi=true |