Unravelling the effect of paramagnetic Ni2+ on the 13C NMR shift tensor for carbonate in Mg2−xNixAl layered double hydroxides by quantum-chemical computations

Structural disorder and low crystallinity render it challenging to characterise the atomic-level structure of layered double hydroxides (LDH). We report a novel multi-step, first-principles computational workflow for the analysis of paramagnetic solid-state NMR of complex inorganic systems such as L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-09, Vol.25 (35), p.24081-24096
Hauptverfasser: Mohan, Megha, Andersen, Anders B A, Mareš, Jiří, Nicholai Daugaard Jensen, Ulla Gro Nielsen, Vaara, Juha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24096
container_issue 35
container_start_page 24081
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Mohan, Megha
Andersen, Anders B A
Mareš, Jiří
Nicholai Daugaard Jensen
Ulla Gro Nielsen
Vaara, Juha
description Structural disorder and low crystallinity render it challenging to characterise the atomic-level structure of layered double hydroxides (LDH). We report a novel multi-step, first-principles computational workflow for the analysis of paramagnetic solid-state NMR of complex inorganic systems such as LDH, which are commonly used as catalysts and energy storage materials. A series of 13CO32−-labelled Mg2−xNixAl-LDH, x ranging from 0 (Mg2Al-LDH) to 2 (Ni2Al-LDH), features three distinct eigenvalues δ11, δ22 and δ33 of the experimental 13C chemical shift tensor. The δii correlate directly with the concentration of the paramagnetic Ni2+ and span a range of |δ11 − δ33| ≈ 90 ppm at x = 0, increasing to 950 ppm at x = 2. In contrast, the isotropic shift, δiso(13C), only varies by −14 ppm in the series. Detailed insight is obtained by computing (1) the orbital shielding by periodic density-functional theory involving interlayer water, (2) the long-range pseudocontact contribution of the randomly distributed Ni2+ ions in the cation layers (characterised by an ab initio susceptibility tensor) by a lattice sum, and (3) the close-range hyperfine terms using a full first-principles shielding machinery. A pseudohydrogen-terminated two-layer cluster model is used to compute (3), particularly the contact terms. Due to negative spin density contribution at the 13C site arising from the close-by Ni2+ sites, this step is necessary to reach a semiquantitative agreement with experiment. These findings influence future NMR investigations of the formally closed-shell interlayer species within LDH, such as the anions or water. Furthermore, the workflow is applicable to a variety of complex materials.
doi_str_mv 10.1039/d3cp03053a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2860405443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860405443</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-fe519ea05a60db0d71aea86b06a95d39df4dded65ee09908091ff5ebab0ba2993</originalsourceid><addsrcrecordid>eNpdkMFq20AQhkVooK6TS55gIJdCUDPr1creYzBpUkgcKPU5jLSz9gZpV9augv0GPecJ-mx5kqpNyaGHYebwMfz_l2VnAr8IlPrSyLpDiUrSUTYRRSlzjYviw_s9Lz9mn2J8QkShhJxkv9a-p2duGuc3kLYMbC3XCYKFjnpqaeM5uRpWbnYBwf9FhFzC6v47xK2zCRL7GHqw49TUV8FTYnAe7jez158v-5XbXzXQ0IF7NmDCUDUM24Ppw94ZjlAdYDeQT0Ob11tuXU0N1KHthkTJBR9PsmNLTeTTf3uarb9e_1je5ncPN9-WV3d5N1ZLuWUlNBMqKtFUaOaCmBZlhSVpZaQ2tjCGTamYUY9OUAtrFVdUYUUzreU0-_z2t-vDbuCYHlsX61EMeQ5DfJwtSixQFYUc0fP_0Kcw9H5M94cqCjUf1crfyFB88g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864457513</pqid></control><display><type>article</type><title>Unravelling the effect of paramagnetic Ni2+ on the 13C NMR shift tensor for carbonate in Mg2−xNixAl layered double hydroxides by quantum-chemical computations</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mohan, Megha ; Andersen, Anders B A ; Mareš, Jiří ; Nicholai Daugaard Jensen ; Ulla Gro Nielsen ; Vaara, Juha</creator><creatorcontrib>Mohan, Megha ; Andersen, Anders B A ; Mareš, Jiří ; Nicholai Daugaard Jensen ; Ulla Gro Nielsen ; Vaara, Juha</creatorcontrib><description>Structural disorder and low crystallinity render it challenging to characterise the atomic-level structure of layered double hydroxides (LDH). We report a novel multi-step, first-principles computational workflow for the analysis of paramagnetic solid-state NMR of complex inorganic systems such as LDH, which are commonly used as catalysts and energy storage materials. A series of 13CO32−-labelled Mg2−xNixAl-LDH, x ranging from 0 (Mg2Al-LDH) to 2 (Ni2Al-LDH), features three distinct eigenvalues δ11, δ22 and δ33 of the experimental 13C chemical shift tensor. The δii correlate directly with the concentration of the paramagnetic Ni2+ and span a range of |δ11 − δ33| ≈ 90 ppm at x = 0, increasing to 950 ppm at x = 2. In contrast, the isotropic shift, δiso(13C), only varies by −14 ppm in the series. Detailed insight is obtained by computing (1) the orbital shielding by periodic density-functional theory involving interlayer water, (2) the long-range pseudocontact contribution of the randomly distributed Ni2+ ions in the cation layers (characterised by an ab initio susceptibility tensor) by a lattice sum, and (3) the close-range hyperfine terms using a full first-principles shielding machinery. A pseudohydrogen-terminated two-layer cluster model is used to compute (3), particularly the contact terms. Due to negative spin density contribution at the 13C site arising from the close-by Ni2+ sites, this step is necessary to reach a semiquantitative agreement with experiment. These findings influence future NMR investigations of the formally closed-shell interlayer species within LDH, such as the anions or water. Furthermore, the workflow is applicable to a variety of complex materials.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp03053a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atomic structure ; Chemical equilibrium ; Density functional theory ; Eigenvalues ; Energy storage ; First principles ; Hydroxides ; Interlayers ; Mathematical analysis ; NMR ; Nuclear magnetic resonance ; Quantum chemistry ; Shielding ; Tensors ; Workflow</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-09, Vol.25 (35), p.24081-24096</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mohan, Megha</creatorcontrib><creatorcontrib>Andersen, Anders B A</creatorcontrib><creatorcontrib>Mareš, Jiří</creatorcontrib><creatorcontrib>Nicholai Daugaard Jensen</creatorcontrib><creatorcontrib>Ulla Gro Nielsen</creatorcontrib><creatorcontrib>Vaara, Juha</creatorcontrib><title>Unravelling the effect of paramagnetic Ni2+ on the 13C NMR shift tensor for carbonate in Mg2−xNixAl layered double hydroxides by quantum-chemical computations</title><title>Physical chemistry chemical physics : PCCP</title><description>Structural disorder and low crystallinity render it challenging to characterise the atomic-level structure of layered double hydroxides (LDH). We report a novel multi-step, first-principles computational workflow for the analysis of paramagnetic solid-state NMR of complex inorganic systems such as LDH, which are commonly used as catalysts and energy storage materials. A series of 13CO32−-labelled Mg2−xNixAl-LDH, x ranging from 0 (Mg2Al-LDH) to 2 (Ni2Al-LDH), features three distinct eigenvalues δ11, δ22 and δ33 of the experimental 13C chemical shift tensor. The δii correlate directly with the concentration of the paramagnetic Ni2+ and span a range of |δ11 − δ33| ≈ 90 ppm at x = 0, increasing to 950 ppm at x = 2. In contrast, the isotropic shift, δiso(13C), only varies by −14 ppm in the series. Detailed insight is obtained by computing (1) the orbital shielding by periodic density-functional theory involving interlayer water, (2) the long-range pseudocontact contribution of the randomly distributed Ni2+ ions in the cation layers (characterised by an ab initio susceptibility tensor) by a lattice sum, and (3) the close-range hyperfine terms using a full first-principles shielding machinery. A pseudohydrogen-terminated two-layer cluster model is used to compute (3), particularly the contact terms. Due to negative spin density contribution at the 13C site arising from the close-by Ni2+ sites, this step is necessary to reach a semiquantitative agreement with experiment. These findings influence future NMR investigations of the formally closed-shell interlayer species within LDH, such as the anions or water. Furthermore, the workflow is applicable to a variety of complex materials.</description><subject>Atomic structure</subject><subject>Chemical equilibrium</subject><subject>Density functional theory</subject><subject>Eigenvalues</subject><subject>Energy storage</subject><subject>First principles</subject><subject>Hydroxides</subject><subject>Interlayers</subject><subject>Mathematical analysis</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Quantum chemistry</subject><subject>Shielding</subject><subject>Tensors</subject><subject>Workflow</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkMFq20AQhkVooK6TS55gIJdCUDPr1creYzBpUkgcKPU5jLSz9gZpV9augv0GPecJ-mx5kqpNyaGHYebwMfz_l2VnAr8IlPrSyLpDiUrSUTYRRSlzjYviw_s9Lz9mn2J8QkShhJxkv9a-p2duGuc3kLYMbC3XCYKFjnpqaeM5uRpWbnYBwf9FhFzC6v47xK2zCRL7GHqw49TUV8FTYnAe7jez158v-5XbXzXQ0IF7NmDCUDUM24Ppw94ZjlAdYDeQT0Ob11tuXU0N1KHthkTJBR9PsmNLTeTTf3uarb9e_1je5ncPN9-WV3d5N1ZLuWUlNBMqKtFUaOaCmBZlhSVpZaQ2tjCGTamYUY9OUAtrFVdUYUUzreU0-_z2t-vDbuCYHlsX61EMeQ5DfJwtSixQFYUc0fP_0Kcw9H5M94cqCjUf1crfyFB88g</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Mohan, Megha</creator><creator>Andersen, Anders B A</creator><creator>Mareš, Jiří</creator><creator>Nicholai Daugaard Jensen</creator><creator>Ulla Gro Nielsen</creator><creator>Vaara, Juha</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20230913</creationdate><title>Unravelling the effect of paramagnetic Ni2+ on the 13C NMR shift tensor for carbonate in Mg2−xNixAl layered double hydroxides by quantum-chemical computations</title><author>Mohan, Megha ; Andersen, Anders B A ; Mareš, Jiří ; Nicholai Daugaard Jensen ; Ulla Gro Nielsen ; Vaara, Juha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-fe519ea05a60db0d71aea86b06a95d39df4dded65ee09908091ff5ebab0ba2993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic structure</topic><topic>Chemical equilibrium</topic><topic>Density functional theory</topic><topic>Eigenvalues</topic><topic>Energy storage</topic><topic>First principles</topic><topic>Hydroxides</topic><topic>Interlayers</topic><topic>Mathematical analysis</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Quantum chemistry</topic><topic>Shielding</topic><topic>Tensors</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohan, Megha</creatorcontrib><creatorcontrib>Andersen, Anders B A</creatorcontrib><creatorcontrib>Mareš, Jiří</creatorcontrib><creatorcontrib>Nicholai Daugaard Jensen</creatorcontrib><creatorcontrib>Ulla Gro Nielsen</creatorcontrib><creatorcontrib>Vaara, Juha</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohan, Megha</au><au>Andersen, Anders B A</au><au>Mareš, Jiří</au><au>Nicholai Daugaard Jensen</au><au>Ulla Gro Nielsen</au><au>Vaara, Juha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling the effect of paramagnetic Ni2+ on the 13C NMR shift tensor for carbonate in Mg2−xNixAl layered double hydroxides by quantum-chemical computations</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-09-13</date><risdate>2023</risdate><volume>25</volume><issue>35</issue><spage>24081</spage><epage>24096</epage><pages>24081-24096</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Structural disorder and low crystallinity render it challenging to characterise the atomic-level structure of layered double hydroxides (LDH). We report a novel multi-step, first-principles computational workflow for the analysis of paramagnetic solid-state NMR of complex inorganic systems such as LDH, which are commonly used as catalysts and energy storage materials. A series of 13CO32−-labelled Mg2−xNixAl-LDH, x ranging from 0 (Mg2Al-LDH) to 2 (Ni2Al-LDH), features three distinct eigenvalues δ11, δ22 and δ33 of the experimental 13C chemical shift tensor. The δii correlate directly with the concentration of the paramagnetic Ni2+ and span a range of |δ11 − δ33| ≈ 90 ppm at x = 0, increasing to 950 ppm at x = 2. In contrast, the isotropic shift, δiso(13C), only varies by −14 ppm in the series. Detailed insight is obtained by computing (1) the orbital shielding by periodic density-functional theory involving interlayer water, (2) the long-range pseudocontact contribution of the randomly distributed Ni2+ ions in the cation layers (characterised by an ab initio susceptibility tensor) by a lattice sum, and (3) the close-range hyperfine terms using a full first-principles shielding machinery. A pseudohydrogen-terminated two-layer cluster model is used to compute (3), particularly the contact terms. Due to negative spin density contribution at the 13C site arising from the close-by Ni2+ sites, this step is necessary to reach a semiquantitative agreement with experiment. These findings influence future NMR investigations of the formally closed-shell interlayer species within LDH, such as the anions or water. Furthermore, the workflow is applicable to a variety of complex materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp03053a</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-09, Vol.25 (35), p.24081-24096
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2860405443
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Atomic structure
Chemical equilibrium
Density functional theory
Eigenvalues
Energy storage
First principles
Hydroxides
Interlayers
Mathematical analysis
NMR
Nuclear magnetic resonance
Quantum chemistry
Shielding
Tensors
Workflow
title Unravelling the effect of paramagnetic Ni2+ on the 13C NMR shift tensor for carbonate in Mg2−xNixAl layered double hydroxides by quantum-chemical computations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20the%20effect%20of%20paramagnetic%20Ni2+%20on%20the%2013C%20NMR%20shift%20tensor%20for%20carbonate%20in%20Mg2%E2%88%92xNixAl%20layered%20double%20hydroxides%20by%20quantum-chemical%20computations&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Mohan,%20Megha&rft.date=2023-09-13&rft.volume=25&rft.issue=35&rft.spage=24081&rft.epage=24096&rft.pages=24081-24096&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp03053a&rft_dat=%3Cproquest%3E2860405443%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864457513&rft_id=info:pmid/&rfr_iscdi=true