MoS2 Nanoflowers Grown on Plasma‐Induced W‐Anchored Graphene for Efficient and Stable H2 Production Through Seawater Electrolysis
Herein, it is found that 3D transition metal dichalcogenide (TMD)—MoS2 nanoflowers—grown on 2D tungsten oxide‐anchored graphene nanosheets (MoS2@W‐G) functions as a superior catalyst for the hydrogen evolution reaction (HER) under both acidic and alkaline conditions. The optimized weight ratio of Mo...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-01, Vol.20 (2), p.e2305220-e2305220 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2305220 |
---|---|
container_issue | 2 |
container_start_page | e2305220 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Van Dien Dang Putikam, Raghunath Ming‐Chang Lin Kung‐Hwa Wei |
description | Herein, it is found that 3D transition metal dichalcogenide (TMD)—MoS2 nanoflowers—grown on 2D tungsten oxide‐anchored graphene nanosheets (MoS2@W‐G) functions as a superior catalyst for the hydrogen evolution reaction (HER) under both acidic and alkaline conditions. The optimized weight ratio of MoS2@W‐G (MoS2:W‐G/1.5:1) in 0.5 M H2SO4 achieves a low overpotential of 78 mV at 10 mA cm–2, a small Tafel slope of 48 mV dec–1, and a high exchange current density (0.321 mA cm⁻2). Furthermore, the same MoS2@W‐G composite exhibits stable HER performance when using real seawater, with Faradaic efficiencies of 96 and 94% in acidic and alkaline media, respectively. Density functional theory calculations based on the hybrid MoS2@W‐G structure model confirm that suitable hybridization of 3D MoS2 and 2D W‐G nanosheets can lower the hydrogen adsorption: Gibbs free energy (∆GH*) from 1.89 eV for MoS2 to –0.13 eV for the MoS2@W‐G composite. The excellent HER activity of the 3D/2D hybridized MoS2@W‐G composite arises from abundance of active heterostructure interfaces, optimizing the electrical configuration, thereby accelerating the adsorption and dissociation of H2O. These findings suggest a new approach for the rational development of alternative 3D/2D TMD/graphene electrocatalysts for HER applications using seawater. |
doi_str_mv | 10.1002/smll.202305220 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2860404404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860404404</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-37bb91fd9ad520a2df82281f0002a3cb18bfdc28b81accdee4e7020a2593ed403</originalsourceid><addsrcrecordid>eNpdkEFLAzEQhRdRsFavngNevLQmk93t7rGU2haqFlrxWLLJxG5Jk5rsUrx58e5v9JcYUTwIA_MGvveYmSS5ZLTPKIWbsDOmDxQ4zQDoUdJhOeO9vIDy-E8zepqchbCllDNIB53k_c4tgdwL67RxB_SBTLw7WOIsWRgRduLz7WNmVStRkaeoh1ZunI_DxIv9Bi0S7TwZa13LGm1DhFVk2YjKIJkCWXgXrU0d01Yb79rnDVmiOIgGo8egbLwzr6EO58mJFibgxW_vJo-349Vo2ps_TGaj4by3hyxvenxQVSXTqhQqAypA6QKgYJrG8wWXFSsqrSQUVcGElAoxxQH9BrOSo0op7ybXP7l7715aDM16VweJxgiLrg1rKHKa0jRWRK_-oVvXehu3W0PJoOTxlyX_AiYudFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912938109</pqid></control><display><type>article</type><title>MoS2 Nanoflowers Grown on Plasma‐Induced W‐Anchored Graphene for Efficient and Stable H2 Production Through Seawater Electrolysis</title><source>Wiley Online Library All Journals</source><creator>Van Dien Dang ; Putikam, Raghunath ; Ming‐Chang Lin ; Kung‐Hwa Wei</creator><creatorcontrib>Van Dien Dang ; Putikam, Raghunath ; Ming‐Chang Lin ; Kung‐Hwa Wei</creatorcontrib><description>Herein, it is found that 3D transition metal dichalcogenide (TMD)—MoS2 nanoflowers—grown on 2D tungsten oxide‐anchored graphene nanosheets (MoS2@W‐G) functions as a superior catalyst for the hydrogen evolution reaction (HER) under both acidic and alkaline conditions. The optimized weight ratio of MoS2@W‐G (MoS2:W‐G/1.5:1) in 0.5 M H2SO4 achieves a low overpotential of 78 mV at 10 mA cm–2, a small Tafel slope of 48 mV dec–1, and a high exchange current density (0.321 mA cm⁻2). Furthermore, the same MoS2@W‐G composite exhibits stable HER performance when using real seawater, with Faradaic efficiencies of 96 and 94% in acidic and alkaline media, respectively. Density functional theory calculations based on the hybrid MoS2@W‐G structure model confirm that suitable hybridization of 3D MoS2 and 2D W‐G nanosheets can lower the hydrogen adsorption: Gibbs free energy (∆GH*) from 1.89 eV for MoS2 to –0.13 eV for the MoS2@W‐G composite. The excellent HER activity of the 3D/2D hybridized MoS2@W‐G composite arises from abundance of active heterostructure interfaces, optimizing the electrical configuration, thereby accelerating the adsorption and dissociation of H2O. These findings suggest a new approach for the rational development of alternative 3D/2D TMD/graphene electrocatalysts for HER applications using seawater.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202305220</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Density functional theory ; Electrocatalysts ; Electrolysis ; Gibbs free energy ; Graphene ; Heterostructures ; Hydrogen evolution reactions ; Molybdenum disulfide ; Nanostructure ; Seawater ; Sulfuric acid ; Transition metal compounds</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-01, Vol.20 (2), p.e2305220-e2305220</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Van Dien Dang</creatorcontrib><creatorcontrib>Putikam, Raghunath</creatorcontrib><creatorcontrib>Ming‐Chang Lin</creatorcontrib><creatorcontrib>Kung‐Hwa Wei</creatorcontrib><title>MoS2 Nanoflowers Grown on Plasma‐Induced W‐Anchored Graphene for Efficient and Stable H2 Production Through Seawater Electrolysis</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Herein, it is found that 3D transition metal dichalcogenide (TMD)—MoS2 nanoflowers—grown on 2D tungsten oxide‐anchored graphene nanosheets (MoS2@W‐G) functions as a superior catalyst for the hydrogen evolution reaction (HER) under both acidic and alkaline conditions. The optimized weight ratio of MoS2@W‐G (MoS2:W‐G/1.5:1) in 0.5 M H2SO4 achieves a low overpotential of 78 mV at 10 mA cm–2, a small Tafel slope of 48 mV dec–1, and a high exchange current density (0.321 mA cm⁻2). Furthermore, the same MoS2@W‐G composite exhibits stable HER performance when using real seawater, with Faradaic efficiencies of 96 and 94% in acidic and alkaline media, respectively. Density functional theory calculations based on the hybrid MoS2@W‐G structure model confirm that suitable hybridization of 3D MoS2 and 2D W‐G nanosheets can lower the hydrogen adsorption: Gibbs free energy (∆GH*) from 1.89 eV for MoS2 to –0.13 eV for the MoS2@W‐G composite. The excellent HER activity of the 3D/2D hybridized MoS2@W‐G composite arises from abundance of active heterostructure interfaces, optimizing the electrical configuration, thereby accelerating the adsorption and dissociation of H2O. These findings suggest a new approach for the rational development of alternative 3D/2D TMD/graphene electrocatalysts for HER applications using seawater.</description><subject>Adsorption</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Gibbs free energy</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Hydrogen evolution reactions</subject><subject>Molybdenum disulfide</subject><subject>Nanostructure</subject><subject>Seawater</subject><subject>Sulfuric acid</subject><subject>Transition metal compounds</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLAzEQhRdRsFavngNevLQmk93t7rGU2haqFlrxWLLJxG5Jk5rsUrx58e5v9JcYUTwIA_MGvveYmSS5ZLTPKIWbsDOmDxQ4zQDoUdJhOeO9vIDy-E8zepqchbCllDNIB53k_c4tgdwL67RxB_SBTLw7WOIsWRgRduLz7WNmVStRkaeoh1ZunI_DxIv9Bi0S7TwZa13LGm1DhFVk2YjKIJkCWXgXrU0d01Yb79rnDVmiOIgGo8egbLwzr6EO58mJFibgxW_vJo-349Vo2ps_TGaj4by3hyxvenxQVSXTqhQqAypA6QKgYJrG8wWXFSsqrSQUVcGElAoxxQH9BrOSo0op7ybXP7l7715aDM16VweJxgiLrg1rKHKa0jRWRK_-oVvXehu3W0PJoOTxlyX_AiYudFo</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Van Dien Dang</creator><creator>Putikam, Raghunath</creator><creator>Ming‐Chang Lin</creator><creator>Kung‐Hwa Wei</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240101</creationdate><title>MoS2 Nanoflowers Grown on Plasma‐Induced W‐Anchored Graphene for Efficient and Stable H2 Production Through Seawater Electrolysis</title><author>Van Dien Dang ; Putikam, Raghunath ; Ming‐Chang Lin ; Kung‐Hwa Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-37bb91fd9ad520a2df82281f0002a3cb18bfdc28b81accdee4e7020a2593ed403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Gibbs free energy</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Hydrogen evolution reactions</topic><topic>Molybdenum disulfide</topic><topic>Nanostructure</topic><topic>Seawater</topic><topic>Sulfuric acid</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Dien Dang</creatorcontrib><creatorcontrib>Putikam, Raghunath</creatorcontrib><creatorcontrib>Ming‐Chang Lin</creatorcontrib><creatorcontrib>Kung‐Hwa Wei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Dien Dang</au><au>Putikam, Raghunath</au><au>Ming‐Chang Lin</au><au>Kung‐Hwa Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoS2 Nanoflowers Grown on Plasma‐Induced W‐Anchored Graphene for Efficient and Stable H2 Production Through Seawater Electrolysis</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>20</volume><issue>2</issue><spage>e2305220</spage><epage>e2305220</epage><pages>e2305220-e2305220</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Herein, it is found that 3D transition metal dichalcogenide (TMD)—MoS2 nanoflowers—grown on 2D tungsten oxide‐anchored graphene nanosheets (MoS2@W‐G) functions as a superior catalyst for the hydrogen evolution reaction (HER) under both acidic and alkaline conditions. The optimized weight ratio of MoS2@W‐G (MoS2:W‐G/1.5:1) in 0.5 M H2SO4 achieves a low overpotential of 78 mV at 10 mA cm–2, a small Tafel slope of 48 mV dec–1, and a high exchange current density (0.321 mA cm⁻2). Furthermore, the same MoS2@W‐G composite exhibits stable HER performance when using real seawater, with Faradaic efficiencies of 96 and 94% in acidic and alkaline media, respectively. Density functional theory calculations based on the hybrid MoS2@W‐G structure model confirm that suitable hybridization of 3D MoS2 and 2D W‐G nanosheets can lower the hydrogen adsorption: Gibbs free energy (∆GH*) from 1.89 eV for MoS2 to –0.13 eV for the MoS2@W‐G composite. The excellent HER activity of the 3D/2D hybridized MoS2@W‐G composite arises from abundance of active heterostructure interfaces, optimizing the electrical configuration, thereby accelerating the adsorption and dissociation of H2O. These findings suggest a new approach for the rational development of alternative 3D/2D TMD/graphene electrocatalysts for HER applications using seawater.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202305220</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-01, Vol.20 (2), p.e2305220-e2305220 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2860404404 |
source | Wiley Online Library All Journals |
subjects | Adsorption Density functional theory Electrocatalysts Electrolysis Gibbs free energy Graphene Heterostructures Hydrogen evolution reactions Molybdenum disulfide Nanostructure Seawater Sulfuric acid Transition metal compounds |
title | MoS2 Nanoflowers Grown on Plasma‐Induced W‐Anchored Graphene for Efficient and Stable H2 Production Through Seawater Electrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoS2%20Nanoflowers%20Grown%20on%20Plasma%E2%80%90Induced%20W%E2%80%90Anchored%20Graphene%20for%20Efficient%20and%20Stable%20H2%20Production%20Through%20Seawater%20Electrolysis&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Van%20Dien%20Dang&rft.date=2024-01-01&rft.volume=20&rft.issue=2&rft.spage=e2305220&rft.epage=e2305220&rft.pages=e2305220-e2305220&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202305220&rft_dat=%3Cproquest%3E2860404404%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912938109&rft_id=info:pmid/&rfr_iscdi=true |