Penetration of a Transverse Supersonic Jet into a Subsonic Compressible Crossflow
Particle image velocimetry data have been acquired in the far field of the interaction generated by an overexpanded axisymmetric supersonic jet exhausting transversely from a flat plate into a subsonic compressible crossflow. Mean velocity fields were found in the streamwise plane along the flowfiel...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2005-02, Vol.43 (2), p.379-389 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 389 |
---|---|
container_issue | 2 |
container_start_page | 379 |
container_title | AIAA journal |
container_volume | 43 |
creator | Beresh, Steven J Henfling, John F Erven, Rocky J Spillers, Russell W |
description | Particle image velocimetry data have been acquired in the far field of the interaction generated by an overexpanded axisymmetric supersonic jet exhausting transversely from a flat plate into a subsonic compressible crossflow. Mean velocity fields were found in the streamwise plane along the flowfield centerline for different values of the crossflow Mach number M. and the jet-to-freestream dynamic pressure ratio J. The magnitude of the streamwise velocity deficit and the vertical velocity component both decay with downstream distance and were observed to be greater for larger J while M. remained constant. Jet trajectories derived independently using the maxima of each of these two velocity components are not identical, but show increasing jet penetration for larger J. Similarity in the normalized velocity field was found for constant J at two different transonic M., but at two lower M. the jet appeared to interact with the wall boundary layer and data did not collapse. The magnitude and width of the peak in the vertical velocity component both increase with J, suggesting that the strength and size of the counter-rotating vortex pair increase and, thus, may have a stronger influence on aerodynamic surfaces despite further jet penetration from the wall. |
doi_str_mv | 10.2514/1.9919 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28603645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28603645</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-24a86a0a7e4c486daa1ac5cd8c67c0040aacf25cd713b4e52ce27e61636c497e3</originalsourceid><addsrcrecordid>eNptkFtLw0AQhRdRsFb9DQFRfEndWzbJoxSvFFRawbdlup1ASpqNuxsv_96tLfRBnw5z5uMwcwg5ZXTEMyav2KgsWblHBiwTIhVF9rZPBpRSljKZ8UNy5P0yTjwv2IC8PGOLwUGobZvYKoFk5qD1H-g8JtO-i2rb2iSPGJK6DTYC036-8cZ21Tn0vp43mIyd9b5q7OcxOaig8Xiy1SF5vb2Zje_TydPdw_h6koKQWUi5hEIBhRylkYVaADAwmVkURuWGUkkBTMWjkTMxl5hxgzxHxZRQRpY5iiG52OR2zr736INe1d5g00CLtveaF4oKJbMdaNYnOqx05-oVuG_NqF43ppleNxbB820ieANNFYswtd_RMUwpLiJ3tuGgBtBL27s2Pvo37fJf6neru0Wlq75pAn4F8QOIE4SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28603645</pqid></control><display><type>article</type><title>Penetration of a Transverse Supersonic Jet into a Subsonic Compressible Crossflow</title><source>Alma/SFX Local Collection</source><creator>Beresh, Steven J ; Henfling, John F ; Erven, Rocky J ; Spillers, Russell W</creator><creatorcontrib>Beresh, Steven J ; Henfling, John F ; Erven, Rocky J ; Spillers, Russell W</creatorcontrib><description>Particle image velocimetry data have been acquired in the far field of the interaction generated by an overexpanded axisymmetric supersonic jet exhausting transversely from a flat plate into a subsonic compressible crossflow. Mean velocity fields were found in the streamwise plane along the flowfield centerline for different values of the crossflow Mach number M. and the jet-to-freestream dynamic pressure ratio J. The magnitude of the streamwise velocity deficit and the vertical velocity component both decay with downstream distance and were observed to be greater for larger J while M. remained constant. Jet trajectories derived independently using the maxima of each of these two velocity components are not identical, but show increasing jet penetration for larger J. Similarity in the normalized velocity field was found for constant J at two different transonic M., but at two lower M. the jet appeared to interact with the wall boundary layer and data did not collapse. The magnitude and width of the peak in the vertical velocity component both increase with J, suggesting that the strength and size of the counter-rotating vortex pair increase and, thus, may have a stronger influence on aerodynamic surfaces despite further jet penetration from the wall.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.9919</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Instrumentation for fluid dynamics ; Jets ; Physics ; Turbulent flows, convection, and heat transfer</subject><ispartof>AIAA journal, 2005-02, Vol.43 (2), p.379-389</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-24a86a0a7e4c486daa1ac5cd8c67c0040aacf25cd713b4e52ce27e61636c497e3</citedby><cites>FETCH-LOGICAL-a345t-24a86a0a7e4c486daa1ac5cd8c67c0040aacf25cd713b4e52ce27e61636c497e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,778,782,787,788,23913,23914,25123,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16456623$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Beresh, Steven J</creatorcontrib><creatorcontrib>Henfling, John F</creatorcontrib><creatorcontrib>Erven, Rocky J</creatorcontrib><creatorcontrib>Spillers, Russell W</creatorcontrib><title>Penetration of a Transverse Supersonic Jet into a Subsonic Compressible Crossflow</title><title>AIAA journal</title><description>Particle image velocimetry data have been acquired in the far field of the interaction generated by an overexpanded axisymmetric supersonic jet exhausting transversely from a flat plate into a subsonic compressible crossflow. Mean velocity fields were found in the streamwise plane along the flowfield centerline for different values of the crossflow Mach number M. and the jet-to-freestream dynamic pressure ratio J. The magnitude of the streamwise velocity deficit and the vertical velocity component both decay with downstream distance and were observed to be greater for larger J while M. remained constant. Jet trajectories derived independently using the maxima of each of these two velocity components are not identical, but show increasing jet penetration for larger J. Similarity in the normalized velocity field was found for constant J at two different transonic M., but at two lower M. the jet appeared to interact with the wall boundary layer and data did not collapse. The magnitude and width of the peak in the vertical velocity component both increase with J, suggesting that the strength and size of the counter-rotating vortex pair increase and, thus, may have a stronger influence on aerodynamic surfaces despite further jet penetration from the wall.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instrumentation for fluid dynamics</subject><subject>Jets</subject><subject>Physics</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkFtLw0AQhRdRsFb9DQFRfEndWzbJoxSvFFRawbdlup1ASpqNuxsv_96tLfRBnw5z5uMwcwg5ZXTEMyav2KgsWblHBiwTIhVF9rZPBpRSljKZ8UNy5P0yTjwv2IC8PGOLwUGobZvYKoFk5qD1H-g8JtO-i2rb2iSPGJK6DTYC036-8cZ21Tn0vp43mIyd9b5q7OcxOaig8Xiy1SF5vb2Zje_TydPdw_h6koKQWUi5hEIBhRylkYVaADAwmVkURuWGUkkBTMWjkTMxl5hxgzxHxZRQRpY5iiG52OR2zr736INe1d5g00CLtveaF4oKJbMdaNYnOqx05-oVuG_NqF43ppleNxbB820ieANNFYswtd_RMUwpLiJ3tuGgBtBL27s2Pvo37fJf6neru0Wlq75pAn4F8QOIE4SA</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Beresh, Steven J</creator><creator>Henfling, John F</creator><creator>Erven, Rocky J</creator><creator>Spillers, Russell W</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20050201</creationdate><title>Penetration of a Transverse Supersonic Jet into a Subsonic Compressible Crossflow</title><author>Beresh, Steven J ; Henfling, John F ; Erven, Rocky J ; Spillers, Russell W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-24a86a0a7e4c486daa1ac5cd8c67c0040aacf25cd713b4e52ce27e61636c497e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instrumentation for fluid dynamics</topic><topic>Jets</topic><topic>Physics</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beresh, Steven J</creatorcontrib><creatorcontrib>Henfling, John F</creatorcontrib><creatorcontrib>Erven, Rocky J</creatorcontrib><creatorcontrib>Spillers, Russell W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beresh, Steven J</au><au>Henfling, John F</au><au>Erven, Rocky J</au><au>Spillers, Russell W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Penetration of a Transverse Supersonic Jet into a Subsonic Compressible Crossflow</atitle><jtitle>AIAA journal</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>43</volume><issue>2</issue><spage>379</spage><epage>389</epage><pages>379-389</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>Particle image velocimetry data have been acquired in the far field of the interaction generated by an overexpanded axisymmetric supersonic jet exhausting transversely from a flat plate into a subsonic compressible crossflow. Mean velocity fields were found in the streamwise plane along the flowfield centerline for different values of the crossflow Mach number M. and the jet-to-freestream dynamic pressure ratio J. The magnitude of the streamwise velocity deficit and the vertical velocity component both decay with downstream distance and were observed to be greater for larger J while M. remained constant. Jet trajectories derived independently using the maxima of each of these two velocity components are not identical, but show increasing jet penetration for larger J. Similarity in the normalized velocity field was found for constant J at two different transonic M., but at two lower M. the jet appeared to interact with the wall boundary layer and data did not collapse. The magnitude and width of the peak in the vertical velocity component both increase with J, suggesting that the strength and size of the counter-rotating vortex pair increase and, thus, may have a stronger influence on aerodynamic surfaces despite further jet penetration from the wall.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.9919</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2005-02, Vol.43 (2), p.379-389 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_proquest_miscellaneous_28603645 |
source | Alma/SFX Local Collection |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Instrumentation for fluid dynamics Jets Physics Turbulent flows, convection, and heat transfer |
title | Penetration of a Transverse Supersonic Jet into a Subsonic Compressible Crossflow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Penetration%20of%20a%20Transverse%20Supersonic%20Jet%20into%20a%20Subsonic%20Compressible%20Crossflow&rft.jtitle=AIAA%20journal&rft.au=Beresh,%20Steven%20J&rft.date=2005-02-01&rft.volume=43&rft.issue=2&rft.spage=379&rft.epage=389&rft.pages=379-389&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.9919&rft_dat=%3Cproquest_cross%3E28603645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28603645&rft_id=info:pmid/&rfr_iscdi=true |