Some important properties of edge shape functions

Some important properties of edge shape functions are investigated such as (1) a method for deriving edge shape functions from nodal shape functions, and (2) required conditions for solving the uniform magnetic field problem using hexahedral edge elements. The followings are obtained for the respect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 1998-09, Vol.34 (5), p.3311-3314
Hauptverfasser: Ahagon, A., Fujiwara, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3314
container_issue 5
container_start_page 3311
container_title IEEE transactions on magnetics
container_volume 34
creator Ahagon, A.
Fujiwara, K.
description Some important properties of edge shape functions are investigated such as (1) a method for deriving edge shape functions from nodal shape functions, and (2) required conditions for solving the uniform magnetic field problem using hexahedral edge elements. The followings are obtained for the respective items: (1) there are a few possibilities for deriving edge shape functions from identical nodal shape functions, and (2) 1st order hexahedral edge elements cannot give uniform fields.
doi_str_mv 10.1109/20.717778
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28603348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>717778</ieee_id><sourcerecordid>28603348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-cbeb6f1fc75a1910c279e0dac9a1cb8cad0547a0d352200b067137089897f64e3</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK4evHrqQQQPXWfStEmOsvgFCx7Uc0nTiVbapibtwX9vpYuehmGe92F4GTtH2CCCvuGwkSilVAdshVpgClDoQ7YCQJVqUYhjdhLj57yKHGHF8MV3lDTd4MNo-jEZgh8ojA3FxLuE6ndK4ocZKHFTb8fG9_GUHTnTRjrbzzV7u7973T6mu-eHp-3tLrU8U2NqK6oKh87K3KBGsFxqgtpYbdBWypoaciEN1FnOOUAFhcRMgtJKS1cIytbsavHOL31NFMeya6KltjU9-SmWXBWQZULN4PUC2uBjDOTKITSdCd8lQvlbSsmhXEqZ2cu91ERrWhdMb5v4HyiQaw4zdrFgDRH9XfeOH5ecZ_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28603348</pqid></control><display><type>article</type><title>Some important properties of edge shape functions</title><source>IEEE Electronic Library (IEL)</source><creator>Ahagon, A. ; Fujiwara, K.</creator><creatorcontrib>Ahagon, A. ; Fujiwara, K.</creatorcontrib><description>Some important properties of edge shape functions are investigated such as (1) a method for deriving edge shape functions from nodal shape functions, and (2) required conditions for solving the uniform magnetic field problem using hexahedral edge elements. The followings are obtained for the respective items: (1) there are a few possibilities for deriving edge shape functions from identical nodal shape functions, and (2) 1st order hexahedral edge elements cannot give uniform fields.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.717778</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied classical electromagnetism ; Artificial intelligence ; Computational efficiency ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Home appliances ; Laboratories ; Magnetic fields ; Magnetic properties ; Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems ; Noise measurement ; Physics ; Shape</subject><ispartof>IEEE transactions on magnetics, 1998-09, Vol.34 (5), p.3311-3314</ispartof><rights>1999 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c238t-cbeb6f1fc75a1910c279e0dac9a1cb8cad0547a0d352200b067137089897f64e3</citedby><cites>FETCH-LOGICAL-c238t-cbeb6f1fc75a1910c279e0dac9a1cb8cad0547a0d352200b067137089897f64e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/717778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/717778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1612920$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahagon, A.</creatorcontrib><creatorcontrib>Fujiwara, K.</creatorcontrib><title>Some important properties of edge shape functions</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Some important properties of edge shape functions are investigated such as (1) a method for deriving edge shape functions from nodal shape functions, and (2) required conditions for solving the uniform magnetic field problem using hexahedral edge elements. The followings are obtained for the respective items: (1) there are a few possibilities for deriving edge shape functions from identical nodal shape functions, and (2) 1st order hexahedral edge elements cannot give uniform fields.</description><subject>Applied classical electromagnetism</subject><subject>Artificial intelligence</subject><subject>Computational efficiency</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Home appliances</subject><subject>Laboratories</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems</subject><subject>Noise measurement</subject><subject>Physics</subject><subject>Shape</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE1LxDAQhoMouK4evHrqQQQPXWfStEmOsvgFCx7Uc0nTiVbapibtwX9vpYuehmGe92F4GTtH2CCCvuGwkSilVAdshVpgClDoQ7YCQJVqUYhjdhLj57yKHGHF8MV3lDTd4MNo-jEZgh8ojA3FxLuE6ndK4ocZKHFTb8fG9_GUHTnTRjrbzzV7u7973T6mu-eHp-3tLrU8U2NqK6oKh87K3KBGsFxqgtpYbdBWypoaciEN1FnOOUAFhcRMgtJKS1cIytbsavHOL31NFMeya6KltjU9-SmWXBWQZULN4PUC2uBjDOTKITSdCd8lQvlbSsmhXEqZ2cu91ERrWhdMb5v4HyiQaw4zdrFgDRH9XfeOH5ecZ_w</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Ahagon, A.</creator><creator>Fujiwara, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19980901</creationdate><title>Some important properties of edge shape functions</title><author>Ahagon, A. ; Fujiwara, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-cbeb6f1fc75a1910c279e0dac9a1cb8cad0547a0d352200b067137089897f64e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied classical electromagnetism</topic><topic>Artificial intelligence</topic><topic>Computational efficiency</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Home appliances</topic><topic>Laboratories</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems</topic><topic>Noise measurement</topic><topic>Physics</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahagon, A.</creatorcontrib><creatorcontrib>Fujiwara, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahagon, A.</au><au>Fujiwara, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some important properties of edge shape functions</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1998-09-01</date><risdate>1998</risdate><volume>34</volume><issue>5</issue><spage>3311</spage><epage>3314</epage><pages>3311-3314</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Some important properties of edge shape functions are investigated such as (1) a method for deriving edge shape functions from nodal shape functions, and (2) required conditions for solving the uniform magnetic field problem using hexahedral edge elements. The followings are obtained for the respective items: (1) there are a few possibilities for deriving edge shape functions from identical nodal shape functions, and (2) 1st order hexahedral edge elements cannot give uniform fields.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.717778</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 1998-09, Vol.34 (5), p.3311-3314
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_miscellaneous_28603348
source IEEE Electronic Library (IEL)
subjects Applied classical electromagnetism
Artificial intelligence
Computational efficiency
Electromagnetism
electron and ion optics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Home appliances
Laboratories
Magnetic fields
Magnetic properties
Magnetostatics
magnetic shielding, magnetic induction, boundary-value problems
Noise measurement
Physics
Shape
title Some important properties of edge shape functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20important%20properties%20of%20edge%20shape%20functions&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Ahagon,%20A.&rft.date=1998-09-01&rft.volume=34&rft.issue=5&rft.spage=3311&rft.epage=3314&rft.pages=3311-3314&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.717778&rft_dat=%3Cproquest_RIE%3E28603348%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28603348&rft_id=info:pmid/&rft_ieee_id=717778&rfr_iscdi=true