Some important properties of edge shape functions
Some important properties of edge shape functions are investigated such as (1) a method for deriving edge shape functions from nodal shape functions, and (2) required conditions for solving the uniform magnetic field problem using hexahedral edge elements. The followings are obtained for the respect...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 1998-09, Vol.34 (5), p.3311-3314 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3314 |
---|---|
container_issue | 5 |
container_start_page | 3311 |
container_title | IEEE transactions on magnetics |
container_volume | 34 |
creator | Ahagon, A. Fujiwara, K. |
description | Some important properties of edge shape functions are investigated such as (1) a method for deriving edge shape functions from nodal shape functions, and (2) required conditions for solving the uniform magnetic field problem using hexahedral edge elements. The followings are obtained for the respective items: (1) there are a few possibilities for deriving edge shape functions from identical nodal shape functions, and (2) 1st order hexahedral edge elements cannot give uniform fields. |
doi_str_mv | 10.1109/20.717778 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28603348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>717778</ieee_id><sourcerecordid>28603348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-cbeb6f1fc75a1910c279e0dac9a1cb8cad0547a0d352200b067137089897f64e3</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK4evHrqQQQPXWfStEmOsvgFCx7Uc0nTiVbapibtwX9vpYuehmGe92F4GTtH2CCCvuGwkSilVAdshVpgClDoQ7YCQJVqUYhjdhLj57yKHGHF8MV3lDTd4MNo-jEZgh8ojA3FxLuE6ndK4ocZKHFTb8fG9_GUHTnTRjrbzzV7u7973T6mu-eHp-3tLrU8U2NqK6oKh87K3KBGsFxqgtpYbdBWypoaciEN1FnOOUAFhcRMgtJKS1cIytbsavHOL31NFMeya6KltjU9-SmWXBWQZULN4PUC2uBjDOTKITSdCd8lQvlbSsmhXEqZ2cu91ERrWhdMb5v4HyiQaw4zdrFgDRH9XfeOH5ecZ_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28603348</pqid></control><display><type>article</type><title>Some important properties of edge shape functions</title><source>IEEE Electronic Library (IEL)</source><creator>Ahagon, A. ; Fujiwara, K.</creator><creatorcontrib>Ahagon, A. ; Fujiwara, K.</creatorcontrib><description>Some important properties of edge shape functions are investigated such as (1) a method for deriving edge shape functions from nodal shape functions, and (2) required conditions for solving the uniform magnetic field problem using hexahedral edge elements. The followings are obtained for the respective items: (1) there are a few possibilities for deriving edge shape functions from identical nodal shape functions, and (2) 1st order hexahedral edge elements cannot give uniform fields.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.717778</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied classical electromagnetism ; Artificial intelligence ; Computational efficiency ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Home appliances ; Laboratories ; Magnetic fields ; Magnetic properties ; Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems ; Noise measurement ; Physics ; Shape</subject><ispartof>IEEE transactions on magnetics, 1998-09, Vol.34 (5), p.3311-3314</ispartof><rights>1999 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c238t-cbeb6f1fc75a1910c279e0dac9a1cb8cad0547a0d352200b067137089897f64e3</citedby><cites>FETCH-LOGICAL-c238t-cbeb6f1fc75a1910c279e0dac9a1cb8cad0547a0d352200b067137089897f64e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/717778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/717778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1612920$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahagon, A.</creatorcontrib><creatorcontrib>Fujiwara, K.</creatorcontrib><title>Some important properties of edge shape functions</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Some important properties of edge shape functions are investigated such as (1) a method for deriving edge shape functions from nodal shape functions, and (2) required conditions for solving the uniform magnetic field problem using hexahedral edge elements. The followings are obtained for the respective items: (1) there are a few possibilities for deriving edge shape functions from identical nodal shape functions, and (2) 1st order hexahedral edge elements cannot give uniform fields.</description><subject>Applied classical electromagnetism</subject><subject>Artificial intelligence</subject><subject>Computational efficiency</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Home appliances</subject><subject>Laboratories</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems</subject><subject>Noise measurement</subject><subject>Physics</subject><subject>Shape</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE1LxDAQhoMouK4evHrqQQQPXWfStEmOsvgFCx7Uc0nTiVbapibtwX9vpYuehmGe92F4GTtH2CCCvuGwkSilVAdshVpgClDoQ7YCQJVqUYhjdhLj57yKHGHF8MV3lDTd4MNo-jEZgh8ojA3FxLuE6ndK4ocZKHFTb8fG9_GUHTnTRjrbzzV7u7973T6mu-eHp-3tLrU8U2NqK6oKh87K3KBGsFxqgtpYbdBWypoaciEN1FnOOUAFhcRMgtJKS1cIytbsavHOL31NFMeya6KltjU9-SmWXBWQZULN4PUC2uBjDOTKITSdCd8lQvlbSsmhXEqZ2cu91ERrWhdMb5v4HyiQaw4zdrFgDRH9XfeOH5ecZ_w</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Ahagon, A.</creator><creator>Fujiwara, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19980901</creationdate><title>Some important properties of edge shape functions</title><author>Ahagon, A. ; Fujiwara, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-cbeb6f1fc75a1910c279e0dac9a1cb8cad0547a0d352200b067137089897f64e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied classical electromagnetism</topic><topic>Artificial intelligence</topic><topic>Computational efficiency</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Home appliances</topic><topic>Laboratories</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems</topic><topic>Noise measurement</topic><topic>Physics</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahagon, A.</creatorcontrib><creatorcontrib>Fujiwara, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahagon, A.</au><au>Fujiwara, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some important properties of edge shape functions</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1998-09-01</date><risdate>1998</risdate><volume>34</volume><issue>5</issue><spage>3311</spage><epage>3314</epage><pages>3311-3314</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Some important properties of edge shape functions are investigated such as (1) a method for deriving edge shape functions from nodal shape functions, and (2) required conditions for solving the uniform magnetic field problem using hexahedral edge elements. The followings are obtained for the respective items: (1) there are a few possibilities for deriving edge shape functions from identical nodal shape functions, and (2) 1st order hexahedral edge elements cannot give uniform fields.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.717778</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 1998-09, Vol.34 (5), p.3311-3314 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_proquest_miscellaneous_28603348 |
source | IEEE Electronic Library (IEL) |
subjects | Applied classical electromagnetism Artificial intelligence Computational efficiency Electromagnetism electron and ion optics Exact sciences and technology Fundamental areas of phenomenology (including applications) Home appliances Laboratories Magnetic fields Magnetic properties Magnetostatics magnetic shielding, magnetic induction, boundary-value problems Noise measurement Physics Shape |
title | Some important properties of edge shape functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20important%20properties%20of%20edge%20shape%20functions&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Ahagon,%20A.&rft.date=1998-09-01&rft.volume=34&rft.issue=5&rft.spage=3311&rft.epage=3314&rft.pages=3311-3314&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.717778&rft_dat=%3Cproquest_RIE%3E28603348%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28603348&rft_id=info:pmid/&rft_ieee_id=717778&rfr_iscdi=true |