Orthogonal time-varying filter banks and wavelet packets

Considers the construction of orthogonal time-varying filter banks. By examining the time domain description of the two-channel orthogonal filter bank the authors find it possible to construct a set of orthogonal boundary filters, which allows to apply the filter bank to one-sided or finite-length s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1994-10, Vol.42 (10), p.2650-2663
Hauptverfasser: Herley, C., Vetterli, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2663
container_issue 10
container_start_page 2650
container_title IEEE transactions on signal processing
container_volume 42
creator Herley, C.
Vetterli, M.
description Considers the construction of orthogonal time-varying filter banks. By examining the time domain description of the two-channel orthogonal filter bank the authors find it possible to construct a set of orthogonal boundary filters, which allows to apply the filter bank to one-sided or finite-length signals, without redundancy or distortion. The method is constructive and complete. There is a whole space of orthogonal boundary solutions, and there is considerable freedom for optimization. This may be used to generate subband tree structures where the tree varies over time, and to change between different filter sets. The authors also show that the iteration of discrete-time time-varying filter banks gives continuous-time bases, just as in the stationary case. This gives rise to wavelet, or wavelet packet, bases for half-line and interval regions.< >
doi_str_mv 10.1109/78.324731
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28602571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>324731</ieee_id><sourcerecordid>28602571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-ca4557baf73571c0db7dfe9e89fa41891d180410b4502350e8e161febe96aa3</originalsourceid><addsrcrecordid>eNo90D1PwzAQBmALgUQpDKxMmZAYUnyxHdsjqiggVeoAA5vlJOcSmi9st4h_T1AqpjvpHr3SvYRcA10AUH0v1YJlXDI4ITPQHFLKZX467lSwVCj5fk4uQvikFDjX-YyojY8f_bbvbJPEusX0YP1P3W0TVzcRfVLYbhcS21XJtz1ggzEZbLnDGC7JmbNNwKvjnJPX1ePb8jldb55elg_rtGSQxbS0XAhZWCeZkFDSqpCVQ41KO8tBaahAUQ604IJmTFBUCDk4LFDn1rI5uZ1SB99_7TFE09ahxKaxHfb7YDKV02wMHuHdBEvfh-DRmcHX7fiLAWr-mjFSmamZ0d5MtkbEf3c8_gIYZF3N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28602571</pqid></control><display><type>article</type><title>Orthogonal time-varying filter banks and wavelet packets</title><source>IEEE Electronic Library (IEL)</source><creator>Herley, C. ; Vetterli, M.</creator><creatorcontrib>Herley, C. ; Vetterli, M.</creatorcontrib><description>Considers the construction of orthogonal time-varying filter banks. By examining the time domain description of the two-channel orthogonal filter bank the authors find it possible to construct a set of orthogonal boundary filters, which allows to apply the filter bank to one-sided or finite-length signals, without redundancy or distortion. The method is constructive and complete. There is a whole space of orthogonal boundary solutions, and there is considerable freedom for optimization. This may be used to generate subband tree structures where the tree varies over time, and to change between different filter sets. The authors also show that the iteration of discrete-time time-varying filter banks gives continuous-time bases, just as in the stationary case. This gives rise to wavelet, or wavelet packet, bases for half-line and interval regions.&lt; &gt;</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.324731</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Channel bank filters ; Distortion ; Filter bank ; Polynomials ; Signal analysis ; Signal design ; Signal processing ; Tree data structures ; Wavelet packets</subject><ispartof>IEEE transactions on signal processing, 1994-10, Vol.42 (10), p.2650-2663</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-ca4557baf73571c0db7dfe9e89fa41891d180410b4502350e8e161febe96aa3</citedby><cites>FETCH-LOGICAL-c312t-ca4557baf73571c0db7dfe9e89fa41891d180410b4502350e8e161febe96aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/324731$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/324731$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Herley, C.</creatorcontrib><creatorcontrib>Vetterli, M.</creatorcontrib><title>Orthogonal time-varying filter banks and wavelet packets</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Considers the construction of orthogonal time-varying filter banks. By examining the time domain description of the two-channel orthogonal filter bank the authors find it possible to construct a set of orthogonal boundary filters, which allows to apply the filter bank to one-sided or finite-length signals, without redundancy or distortion. The method is constructive and complete. There is a whole space of orthogonal boundary solutions, and there is considerable freedom for optimization. This may be used to generate subband tree structures where the tree varies over time, and to change between different filter sets. The authors also show that the iteration of discrete-time time-varying filter banks gives continuous-time bases, just as in the stationary case. This gives rise to wavelet, or wavelet packet, bases for half-line and interval regions.&lt; &gt;</description><subject>Channel bank filters</subject><subject>Distortion</subject><subject>Filter bank</subject><subject>Polynomials</subject><subject>Signal analysis</subject><subject>Signal design</subject><subject>Signal processing</subject><subject>Tree data structures</subject><subject>Wavelet packets</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo90D1PwzAQBmALgUQpDKxMmZAYUnyxHdsjqiggVeoAA5vlJOcSmi9st4h_T1AqpjvpHr3SvYRcA10AUH0v1YJlXDI4ITPQHFLKZX467lSwVCj5fk4uQvikFDjX-YyojY8f_bbvbJPEusX0YP1P3W0TVzcRfVLYbhcS21XJtz1ggzEZbLnDGC7JmbNNwKvjnJPX1ePb8jldb55elg_rtGSQxbS0XAhZWCeZkFDSqpCVQ41KO8tBaahAUQ604IJmTFBUCDk4LFDn1rI5uZ1SB99_7TFE09ahxKaxHfb7YDKV02wMHuHdBEvfh-DRmcHX7fiLAWr-mjFSmamZ0d5MtkbEf3c8_gIYZF3N</recordid><startdate>19941001</startdate><enddate>19941001</enddate><creator>Herley, C.</creator><creator>Vetterli, M.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19941001</creationdate><title>Orthogonal time-varying filter banks and wavelet packets</title><author>Herley, C. ; Vetterli, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-ca4557baf73571c0db7dfe9e89fa41891d180410b4502350e8e161febe96aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Channel bank filters</topic><topic>Distortion</topic><topic>Filter bank</topic><topic>Polynomials</topic><topic>Signal analysis</topic><topic>Signal design</topic><topic>Signal processing</topic><topic>Tree data structures</topic><topic>Wavelet packets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herley, C.</creatorcontrib><creatorcontrib>Vetterli, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Herley, C.</au><au>Vetterli, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal time-varying filter banks and wavelet packets</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1994-10-01</date><risdate>1994</risdate><volume>42</volume><issue>10</issue><spage>2650</spage><epage>2663</epage><pages>2650-2663</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Considers the construction of orthogonal time-varying filter banks. By examining the time domain description of the two-channel orthogonal filter bank the authors find it possible to construct a set of orthogonal boundary filters, which allows to apply the filter bank to one-sided or finite-length signals, without redundancy or distortion. The method is constructive and complete. There is a whole space of orthogonal boundary solutions, and there is considerable freedom for optimization. This may be used to generate subband tree structures where the tree varies over time, and to change between different filter sets. The authors also show that the iteration of discrete-time time-varying filter banks gives continuous-time bases, just as in the stationary case. This gives rise to wavelet, or wavelet packet, bases for half-line and interval regions.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/78.324731</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1994-10, Vol.42 (10), p.2650-2663
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_28602571
source IEEE Electronic Library (IEL)
subjects Channel bank filters
Distortion
Filter bank
Polynomials
Signal analysis
Signal design
Signal processing
Tree data structures
Wavelet packets
title Orthogonal time-varying filter banks and wavelet packets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20time-varying%20filter%20banks%20and%20wavelet%20packets&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Herley,%20C.&rft.date=1994-10-01&rft.volume=42&rft.issue=10&rft.spage=2650&rft.epage=2663&rft.pages=2650-2663&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.324731&rft_dat=%3Cproquest_RIE%3E28602571%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28602571&rft_id=info:pmid/&rft_ieee_id=324731&rfr_iscdi=true