Orthogonal time-varying filter banks and wavelet packets
Considers the construction of orthogonal time-varying filter banks. By examining the time domain description of the two-channel orthogonal filter bank the authors find it possible to construct a set of orthogonal boundary filters, which allows to apply the filter bank to one-sided or finite-length s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 1994-10, Vol.42 (10), p.2650-2663 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2663 |
---|---|
container_issue | 10 |
container_start_page | 2650 |
container_title | IEEE transactions on signal processing |
container_volume | 42 |
creator | Herley, C. Vetterli, M. |
description | Considers the construction of orthogonal time-varying filter banks. By examining the time domain description of the two-channel orthogonal filter bank the authors find it possible to construct a set of orthogonal boundary filters, which allows to apply the filter bank to one-sided or finite-length signals, without redundancy or distortion. The method is constructive and complete. There is a whole space of orthogonal boundary solutions, and there is considerable freedom for optimization. This may be used to generate subband tree structures where the tree varies over time, and to change between different filter sets. The authors also show that the iteration of discrete-time time-varying filter banks gives continuous-time bases, just as in the stationary case. This gives rise to wavelet, or wavelet packet, bases for half-line and interval regions.< > |
doi_str_mv | 10.1109/78.324731 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28602571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>324731</ieee_id><sourcerecordid>28602571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-ca4557baf73571c0db7dfe9e89fa41891d180410b4502350e8e161febe96aa3</originalsourceid><addsrcrecordid>eNo90D1PwzAQBmALgUQpDKxMmZAYUnyxHdsjqiggVeoAA5vlJOcSmi9st4h_T1AqpjvpHr3SvYRcA10AUH0v1YJlXDI4ITPQHFLKZX467lSwVCj5fk4uQvikFDjX-YyojY8f_bbvbJPEusX0YP1P3W0TVzcRfVLYbhcS21XJtz1ggzEZbLnDGC7JmbNNwKvjnJPX1ePb8jldb55elg_rtGSQxbS0XAhZWCeZkFDSqpCVQ41KO8tBaahAUQ604IJmTFBUCDk4LFDn1rI5uZ1SB99_7TFE09ahxKaxHfb7YDKV02wMHuHdBEvfh-DRmcHX7fiLAWr-mjFSmamZ0d5MtkbEf3c8_gIYZF3N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28602571</pqid></control><display><type>article</type><title>Orthogonal time-varying filter banks and wavelet packets</title><source>IEEE Electronic Library (IEL)</source><creator>Herley, C. ; Vetterli, M.</creator><creatorcontrib>Herley, C. ; Vetterli, M.</creatorcontrib><description>Considers the construction of orthogonal time-varying filter banks. By examining the time domain description of the two-channel orthogonal filter bank the authors find it possible to construct a set of orthogonal boundary filters, which allows to apply the filter bank to one-sided or finite-length signals, without redundancy or distortion. The method is constructive and complete. There is a whole space of orthogonal boundary solutions, and there is considerable freedom for optimization. This may be used to generate subband tree structures where the tree varies over time, and to change between different filter sets. The authors also show that the iteration of discrete-time time-varying filter banks gives continuous-time bases, just as in the stationary case. This gives rise to wavelet, or wavelet packet, bases for half-line and interval regions.< ></description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.324731</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Channel bank filters ; Distortion ; Filter bank ; Polynomials ; Signal analysis ; Signal design ; Signal processing ; Tree data structures ; Wavelet packets</subject><ispartof>IEEE transactions on signal processing, 1994-10, Vol.42 (10), p.2650-2663</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-ca4557baf73571c0db7dfe9e89fa41891d180410b4502350e8e161febe96aa3</citedby><cites>FETCH-LOGICAL-c312t-ca4557baf73571c0db7dfe9e89fa41891d180410b4502350e8e161febe96aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/324731$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/324731$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Herley, C.</creatorcontrib><creatorcontrib>Vetterli, M.</creatorcontrib><title>Orthogonal time-varying filter banks and wavelet packets</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Considers the construction of orthogonal time-varying filter banks. By examining the time domain description of the two-channel orthogonal filter bank the authors find it possible to construct a set of orthogonal boundary filters, which allows to apply the filter bank to one-sided or finite-length signals, without redundancy or distortion. The method is constructive and complete. There is a whole space of orthogonal boundary solutions, and there is considerable freedom for optimization. This may be used to generate subband tree structures where the tree varies over time, and to change between different filter sets. The authors also show that the iteration of discrete-time time-varying filter banks gives continuous-time bases, just as in the stationary case. This gives rise to wavelet, or wavelet packet, bases for half-line and interval regions.< ></description><subject>Channel bank filters</subject><subject>Distortion</subject><subject>Filter bank</subject><subject>Polynomials</subject><subject>Signal analysis</subject><subject>Signal design</subject><subject>Signal processing</subject><subject>Tree data structures</subject><subject>Wavelet packets</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo90D1PwzAQBmALgUQpDKxMmZAYUnyxHdsjqiggVeoAA5vlJOcSmi9st4h_T1AqpjvpHr3SvYRcA10AUH0v1YJlXDI4ITPQHFLKZX467lSwVCj5fk4uQvikFDjX-YyojY8f_bbvbJPEusX0YP1P3W0TVzcRfVLYbhcS21XJtz1ggzEZbLnDGC7JmbNNwKvjnJPX1ePb8jldb55elg_rtGSQxbS0XAhZWCeZkFDSqpCVQ41KO8tBaahAUQ604IJmTFBUCDk4LFDn1rI5uZ1SB99_7TFE09ahxKaxHfb7YDKV02wMHuHdBEvfh-DRmcHX7fiLAWr-mjFSmamZ0d5MtkbEf3c8_gIYZF3N</recordid><startdate>19941001</startdate><enddate>19941001</enddate><creator>Herley, C.</creator><creator>Vetterli, M.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19941001</creationdate><title>Orthogonal time-varying filter banks and wavelet packets</title><author>Herley, C. ; Vetterli, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-ca4557baf73571c0db7dfe9e89fa41891d180410b4502350e8e161febe96aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Channel bank filters</topic><topic>Distortion</topic><topic>Filter bank</topic><topic>Polynomials</topic><topic>Signal analysis</topic><topic>Signal design</topic><topic>Signal processing</topic><topic>Tree data structures</topic><topic>Wavelet packets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herley, C.</creatorcontrib><creatorcontrib>Vetterli, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Herley, C.</au><au>Vetterli, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal time-varying filter banks and wavelet packets</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1994-10-01</date><risdate>1994</risdate><volume>42</volume><issue>10</issue><spage>2650</spage><epage>2663</epage><pages>2650-2663</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Considers the construction of orthogonal time-varying filter banks. By examining the time domain description of the two-channel orthogonal filter bank the authors find it possible to construct a set of orthogonal boundary filters, which allows to apply the filter bank to one-sided or finite-length signals, without redundancy or distortion. The method is constructive and complete. There is a whole space of orthogonal boundary solutions, and there is considerable freedom for optimization. This may be used to generate subband tree structures where the tree varies over time, and to change between different filter sets. The authors also show that the iteration of discrete-time time-varying filter banks gives continuous-time bases, just as in the stationary case. This gives rise to wavelet, or wavelet packet, bases for half-line and interval regions.< ></abstract><pub>IEEE</pub><doi>10.1109/78.324731</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 1994-10, Vol.42 (10), p.2650-2663 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_28602571 |
source | IEEE Electronic Library (IEL) |
subjects | Channel bank filters Distortion Filter bank Polynomials Signal analysis Signal design Signal processing Tree data structures Wavelet packets |
title | Orthogonal time-varying filter banks and wavelet packets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20time-varying%20filter%20banks%20and%20wavelet%20packets&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Herley,%20C.&rft.date=1994-10-01&rft.volume=42&rft.issue=10&rft.spage=2650&rft.epage=2663&rft.pages=2650-2663&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.324731&rft_dat=%3Cproquest_RIE%3E28602571%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28602571&rft_id=info:pmid/&rft_ieee_id=324731&rfr_iscdi=true |