Synthesis and characterization of epoxy based nanocomposites
Epoxy‐clay nanocomposites were synthesized to examine the effects of the content and type of different clays on the structure and mechanical properties of the nanocomposites. Diglycidyl ether of bisphenol‐A (epoxy) was reinforced by 0.5–11 wt % natural (Cloisite Na+) and organically modified (Cloisi...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2005-11, Vol.98 (3), p.1081-1086 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1086 |
---|---|
container_issue | 3 |
container_start_page | 1081 |
container_title | Journal of applied polymer science |
container_volume | 98 |
creator | Basara, Cigdem Yilmazer, Ulku Bayram, Goknur |
description | Epoxy‐clay nanocomposites were synthesized to examine the effects of the content and type of different clays on the structure and mechanical properties of the nanocomposites. Diglycidyl ether of bisphenol‐A (epoxy) was reinforced by 0.5–11 wt % natural (Cloisite Na+) and organically modified (Cloisite 30B) types of montmorillonite. SEM results showed that as the clay content increased, larger agglomerates of clay were present. Nanocomposites with Cloisite 30B exhibited better dispersion and a lower degree of agglomeration than nanocomposites with Cloisite Na+. X‐ray results indicated that in nanocomposites with 3 wt % Cloisite 30B, d‐spacing expanded from 18.4 Å (the initial value of the pure clay) to 38.2 Å. The glass transition temperature increased from 73°C, in the unfilled epoxy resin, to 83.5°C in the nanocomposite with 9 wt % Cloisite 30B. The tensile strength exhibited a maximum at 1 wt % modified clay loading. Addition of 0.5 wt % organically modified clay improved the impact strength of the epoxy resin by 137%; in contrast, addition of 0.5 wt % unmodified clay improved the impact strength by 72%. Tensile modulus increased with increasing clay loading in both types of nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1081–1086, 2005 |
doi_str_mv | 10.1002/app.22242 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28599327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28599327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4052-74935c08cdd30b1fb748c1ad80e7c5de0940a55ac547ad580dac13e55f197d2f3</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqUw8AZZQGJIazt27UgspYKCVEElimCzbm1HNaRxsFPR8vQEys_EdId7zhk-hI4J7hGMaR_qukcpZXQHdQjORcoGVO6iTvsjqcxzvo8OYnzGmBCOBx10fr-pmoWNLiZQmUQvIIBubHDv0DhfJb5IbO3Xm2QO0Zqkgsprv6x9dI2Nh2ivgDLao-_bRQ9Xl7PRdTq5G9-MhpNUM8xpKliecY2lNibDc1LMBZOagJHYCs2NxTnDwDlozgQYLrEBTTLLeUFyYWiRddHptlsH_7qysVFLF7UtS6isX0VFJc_zjIoWPNuCOvgYgy1UHdwSwkYRrD73Ue0-6muflj35jkLUUBYBKu3inyAIliRjLdffcm-utJv_g2o4nf6U063hYmPXvwaEFzUQmeDq8XashGAXbMaflMw-AI_9gxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28599327</pqid></control><display><type>article</type><title>Synthesis and characterization of epoxy based nanocomposites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Basara, Cigdem ; Yilmazer, Ulku ; Bayram, Goknur</creator><creatorcontrib>Basara, Cigdem ; Yilmazer, Ulku ; Bayram, Goknur</creatorcontrib><description>Epoxy‐clay nanocomposites were synthesized to examine the effects of the content and type of different clays on the structure and mechanical properties of the nanocomposites. Diglycidyl ether of bisphenol‐A (epoxy) was reinforced by 0.5–11 wt % natural (Cloisite Na+) and organically modified (Cloisite 30B) types of montmorillonite. SEM results showed that as the clay content increased, larger agglomerates of clay were present. Nanocomposites with Cloisite 30B exhibited better dispersion and a lower degree of agglomeration than nanocomposites with Cloisite Na+. X‐ray results indicated that in nanocomposites with 3 wt % Cloisite 30B, d‐spacing expanded from 18.4 Å (the initial value of the pure clay) to 38.2 Å. The glass transition temperature increased from 73°C, in the unfilled epoxy resin, to 83.5°C in the nanocomposite with 9 wt % Cloisite 30B. The tensile strength exhibited a maximum at 1 wt % modified clay loading. Addition of 0.5 wt % organically modified clay improved the impact strength of the epoxy resin by 137%; in contrast, addition of 0.5 wt % unmodified clay improved the impact strength by 72%. Tensile modulus increased with increasing clay loading in both types of nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1081–1086, 2005</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.22242</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Composites ; epoxy resin ; Exact sciences and technology ; Forms of application and semi-finished materials ; mechanical and thermal properties ; montmorillonite ; nanocomposite ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Journal of applied polymer science, 2005-11, Vol.98 (3), p.1081-1086</ispartof><rights>Copyright © 2005 Wiley Periodicals, Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4052-74935c08cdd30b1fb748c1ad80e7c5de0940a55ac547ad580dac13e55f197d2f3</citedby><cites>FETCH-LOGICAL-c4052-74935c08cdd30b1fb748c1ad80e7c5de0940a55ac547ad580dac13e55f197d2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.22242$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.22242$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17108134$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Basara, Cigdem</creatorcontrib><creatorcontrib>Yilmazer, Ulku</creatorcontrib><creatorcontrib>Bayram, Goknur</creatorcontrib><title>Synthesis and characterization of epoxy based nanocomposites</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Epoxy‐clay nanocomposites were synthesized to examine the effects of the content and type of different clays on the structure and mechanical properties of the nanocomposites. Diglycidyl ether of bisphenol‐A (epoxy) was reinforced by 0.5–11 wt % natural (Cloisite Na+) and organically modified (Cloisite 30B) types of montmorillonite. SEM results showed that as the clay content increased, larger agglomerates of clay were present. Nanocomposites with Cloisite 30B exhibited better dispersion and a lower degree of agglomeration than nanocomposites with Cloisite Na+. X‐ray results indicated that in nanocomposites with 3 wt % Cloisite 30B, d‐spacing expanded from 18.4 Å (the initial value of the pure clay) to 38.2 Å. The glass transition temperature increased from 73°C, in the unfilled epoxy resin, to 83.5°C in the nanocomposite with 9 wt % Cloisite 30B. The tensile strength exhibited a maximum at 1 wt % modified clay loading. Addition of 0.5 wt % organically modified clay improved the impact strength of the epoxy resin by 137%; in contrast, addition of 0.5 wt % unmodified clay improved the impact strength by 72%. Tensile modulus increased with increasing clay loading in both types of nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1081–1086, 2005</description><subject>Applied sciences</subject><subject>Composites</subject><subject>epoxy resin</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>mechanical and thermal properties</subject><subject>montmorillonite</subject><subject>nanocomposite</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EEqUw8AZZQGJIazt27UgspYKCVEElimCzbm1HNaRxsFPR8vQEys_EdId7zhk-hI4J7hGMaR_qukcpZXQHdQjORcoGVO6iTvsjqcxzvo8OYnzGmBCOBx10fr-pmoWNLiZQmUQvIIBubHDv0DhfJb5IbO3Xm2QO0Zqkgsprv6x9dI2Nh2ivgDLao-_bRQ9Xl7PRdTq5G9-MhpNUM8xpKliecY2lNibDc1LMBZOagJHYCs2NxTnDwDlozgQYLrEBTTLLeUFyYWiRddHptlsH_7qysVFLF7UtS6isX0VFJc_zjIoWPNuCOvgYgy1UHdwSwkYRrD73Ue0-6muflj35jkLUUBYBKu3inyAIliRjLdffcm-utJv_g2o4nf6U063hYmPXvwaEFzUQmeDq8XashGAXbMaflMw-AI_9gxA</recordid><startdate>20051105</startdate><enddate>20051105</enddate><creator>Basara, Cigdem</creator><creator>Yilmazer, Ulku</creator><creator>Bayram, Goknur</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20051105</creationdate><title>Synthesis and characterization of epoxy based nanocomposites</title><author>Basara, Cigdem ; Yilmazer, Ulku ; Bayram, Goknur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4052-74935c08cdd30b1fb748c1ad80e7c5de0940a55ac547ad580dac13e55f197d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>epoxy resin</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>mechanical and thermal properties</topic><topic>montmorillonite</topic><topic>nanocomposite</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basara, Cigdem</creatorcontrib><creatorcontrib>Yilmazer, Ulku</creatorcontrib><creatorcontrib>Bayram, Goknur</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basara, Cigdem</au><au>Yilmazer, Ulku</au><au>Bayram, Goknur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and characterization of epoxy based nanocomposites</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2005-11-05</date><risdate>2005</risdate><volume>98</volume><issue>3</issue><spage>1081</spage><epage>1086</epage><pages>1081-1086</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Epoxy‐clay nanocomposites were synthesized to examine the effects of the content and type of different clays on the structure and mechanical properties of the nanocomposites. Diglycidyl ether of bisphenol‐A (epoxy) was reinforced by 0.5–11 wt % natural (Cloisite Na+) and organically modified (Cloisite 30B) types of montmorillonite. SEM results showed that as the clay content increased, larger agglomerates of clay were present. Nanocomposites with Cloisite 30B exhibited better dispersion and a lower degree of agglomeration than nanocomposites with Cloisite Na+. X‐ray results indicated that in nanocomposites with 3 wt % Cloisite 30B, d‐spacing expanded from 18.4 Å (the initial value of the pure clay) to 38.2 Å. The glass transition temperature increased from 73°C, in the unfilled epoxy resin, to 83.5°C in the nanocomposite with 9 wt % Cloisite 30B. The tensile strength exhibited a maximum at 1 wt % modified clay loading. Addition of 0.5 wt % organically modified clay improved the impact strength of the epoxy resin by 137%; in contrast, addition of 0.5 wt % unmodified clay improved the impact strength by 72%. Tensile modulus increased with increasing clay loading in both types of nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1081–1086, 2005</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.22242</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2005-11, Vol.98 (3), p.1081-1086 |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_28599327 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Composites epoxy resin Exact sciences and technology Forms of application and semi-finished materials mechanical and thermal properties montmorillonite nanocomposite Polymer industry, paints, wood Technology of polymers |
title | Synthesis and characterization of epoxy based nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20characterization%20of%20epoxy%20based%20nanocomposites&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Basara,%20Cigdem&rft.date=2005-11-05&rft.volume=98&rft.issue=3&rft.spage=1081&rft.epage=1086&rft.pages=1081-1086&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.22242&rft_dat=%3Cproquest_cross%3E28599327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28599327&rft_id=info:pmid/&rfr_iscdi=true |