Signatures of Extreme Longevity: A Perspective from Bivalve Molecular Evolution
Abstract Among Metazoa, bivalves have the highest lifespan disparity, ranging from 1 to 500+ years, making them an exceptional testing ground to understand mechanisms underlying aging and the evolution of extended longevity. Nevertheless, comparative molecular evolution has been an overlooked approa...
Gespeichert in:
Veröffentlicht in: | Genome biology and evolution 2023-11, Vol.15 (11) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Genome biology and evolution |
container_volume | 15 |
creator | Iannello, Mariangela Forni, Giobbe Piccinini, Giovanni Xu, Ran Martelossi, Jacopo Ghiselli, Fabrizio Milani, Liliana |
description | Abstract
Among Metazoa, bivalves have the highest lifespan disparity, ranging from 1 to 500+ years, making them an exceptional testing ground to understand mechanisms underlying aging and the evolution of extended longevity. Nevertheless, comparative molecular evolution has been an overlooked approach in this instance. Here, we leveraged transcriptomic resources spanning 30 bivalve species to unravel the signatures of convergent molecular evolution in four long-lived species: Margaritifera margaritifera, Elliptio complanata, Lampsilis siliquoidea, and Arctica islandica (the latter represents the longest-lived noncolonial metazoan known so far). We applied a comprehensive approach—which included inference of convergent dN/dS, convergent positive selection, and convergent amino acid substitution—with a strong focus on the reduction of false positives. Genes with convergent evolution in long-lived bivalves show more physical and functional interactions to each other than expected, suggesting that they are biologically connected; this interaction network is enriched in genes for which a role in longevity has been experimentally supported in other species. This suggests that genes in the network are involved in extended longevity in bivalves and, consequently, that the mechanisms underlying extended longevity are—at least partially—shared across Metazoa. Although we believe that an integration of different genes and pathways is required for the extended longevity phenotype, we highlight the potential central roles of genes involved in cell proliferation control, translational machinery, and response to hypoxia, in lifespan extension. |
doi_str_mv | 10.1093/gbe/evad159 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2859603214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gbe/evad159</oup_id><sourcerecordid>2859603214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-93c536b3ddb1a46b4b39e25e4ca5bdf4eb5d4ecfcaca7a3404fd216ae2c29c33</originalsourceid><addsrcrecordid>eNp9kM1LwzAYh4MoTqcn75KTCFKXNB9dvc0xP2Aywd1Lkr4dlbapSVrcf29lUzx5en8vPDyHB6ELSm4pSdlko2ECvcqpSA_QCU1EGkkp2OGfPUKn3r8TIiWX7BiNWCJ5MpXkBK3eyk2jQufAY1vgxWdwUANe2mYDfRm2d3iGX8H5Fkwoe8CFszW-L3tVDc-LrcB0lXJ40duqC6VtztBRoSoP5_s7RuuHxXr-FC1Xj8_z2TIyTCQhSpkRTGqW55oqLjXXLIVYADdK6LzgoEXOwRRGGZUoxgkv8phKBbGJU8PYGF3vtK2zHx34kNWlN1BVqgHb-SyeilQSFlM-oDc71DjrvYMia11ZK7fNKMm-A2ZDwGwfcKAv9-JO15D_sj_FBuBqB9iu_df0Ba95e54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859603214</pqid></control><display><type>article</type><title>Signatures of Extreme Longevity: A Perspective from Bivalve Molecular Evolution</title><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford University Press Open Access</source><source>PubMed Central</source><creator>Iannello, Mariangela ; Forni, Giobbe ; Piccinini, Giovanni ; Xu, Ran ; Martelossi, Jacopo ; Ghiselli, Fabrizio ; Milani, Liliana</creator><contributor>Alba, Mar</contributor><creatorcontrib>Iannello, Mariangela ; Forni, Giobbe ; Piccinini, Giovanni ; Xu, Ran ; Martelossi, Jacopo ; Ghiselli, Fabrizio ; Milani, Liliana ; Alba, Mar</creatorcontrib><description>Abstract
Among Metazoa, bivalves have the highest lifespan disparity, ranging from 1 to 500+ years, making them an exceptional testing ground to understand mechanisms underlying aging and the evolution of extended longevity. Nevertheless, comparative molecular evolution has been an overlooked approach in this instance. Here, we leveraged transcriptomic resources spanning 30 bivalve species to unravel the signatures of convergent molecular evolution in four long-lived species: Margaritifera margaritifera, Elliptio complanata, Lampsilis siliquoidea, and Arctica islandica (the latter represents the longest-lived noncolonial metazoan known so far). We applied a comprehensive approach—which included inference of convergent dN/dS, convergent positive selection, and convergent amino acid substitution—with a strong focus on the reduction of false positives. Genes with convergent evolution in long-lived bivalves show more physical and functional interactions to each other than expected, suggesting that they are biologically connected; this interaction network is enriched in genes for which a role in longevity has been experimentally supported in other species. This suggests that genes in the network are involved in extended longevity in bivalves and, consequently, that the mechanisms underlying extended longevity are—at least partially—shared across Metazoa. Although we believe that an integration of different genes and pathways is required for the extended longevity phenotype, we highlight the potential central roles of genes involved in cell proliferation control, translational machinery, and response to hypoxia, in lifespan extension.</description><identifier>ISSN: 1759-6653</identifier><identifier>EISSN: 1759-6653</identifier><identifier>DOI: 10.1093/gbe/evad159</identifier><identifier>PMID: 37647860</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Aging - physiology ; Animals ; Bivalvia - genetics ; Hypoxia ; Longevity - genetics</subject><ispartof>Genome biology and evolution, 2023-11, Vol.15 (11)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-93c536b3ddb1a46b4b39e25e4ca5bdf4eb5d4ecfcaca7a3404fd216ae2c29c33</citedby><cites>FETCH-LOGICAL-c357t-93c536b3ddb1a46b4b39e25e4ca5bdf4eb5d4ecfcaca7a3404fd216ae2c29c33</cites><orcidid>0000-0002-1680-8616 ; 0000-0001-5052-2075 ; 0000-0001-5736-1024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37647860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Alba, Mar</contributor><creatorcontrib>Iannello, Mariangela</creatorcontrib><creatorcontrib>Forni, Giobbe</creatorcontrib><creatorcontrib>Piccinini, Giovanni</creatorcontrib><creatorcontrib>Xu, Ran</creatorcontrib><creatorcontrib>Martelossi, Jacopo</creatorcontrib><creatorcontrib>Ghiselli, Fabrizio</creatorcontrib><creatorcontrib>Milani, Liliana</creatorcontrib><title>Signatures of Extreme Longevity: A Perspective from Bivalve Molecular Evolution</title><title>Genome biology and evolution</title><addtitle>Genome Biol Evol</addtitle><description>Abstract
Among Metazoa, bivalves have the highest lifespan disparity, ranging from 1 to 500+ years, making them an exceptional testing ground to understand mechanisms underlying aging and the evolution of extended longevity. Nevertheless, comparative molecular evolution has been an overlooked approach in this instance. Here, we leveraged transcriptomic resources spanning 30 bivalve species to unravel the signatures of convergent molecular evolution in four long-lived species: Margaritifera margaritifera, Elliptio complanata, Lampsilis siliquoidea, and Arctica islandica (the latter represents the longest-lived noncolonial metazoan known so far). We applied a comprehensive approach—which included inference of convergent dN/dS, convergent positive selection, and convergent amino acid substitution—with a strong focus on the reduction of false positives. Genes with convergent evolution in long-lived bivalves show more physical and functional interactions to each other than expected, suggesting that they are biologically connected; this interaction network is enriched in genes for which a role in longevity has been experimentally supported in other species. This suggests that genes in the network are involved in extended longevity in bivalves and, consequently, that the mechanisms underlying extended longevity are—at least partially—shared across Metazoa. Although we believe that an integration of different genes and pathways is required for the extended longevity phenotype, we highlight the potential central roles of genes involved in cell proliferation control, translational machinery, and response to hypoxia, in lifespan extension.</description><subject>Aging - physiology</subject><subject>Animals</subject><subject>Bivalvia - genetics</subject><subject>Hypoxia</subject><subject>Longevity - genetics</subject><issn>1759-6653</issn><issn>1759-6653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kM1LwzAYh4MoTqcn75KTCFKXNB9dvc0xP2Aywd1Lkr4dlbapSVrcf29lUzx5en8vPDyHB6ELSm4pSdlko2ECvcqpSA_QCU1EGkkp2OGfPUKn3r8TIiWX7BiNWCJ5MpXkBK3eyk2jQufAY1vgxWdwUANe2mYDfRm2d3iGX8H5Fkwoe8CFszW-L3tVDc-LrcB0lXJ40duqC6VtztBRoSoP5_s7RuuHxXr-FC1Xj8_z2TIyTCQhSpkRTGqW55oqLjXXLIVYADdK6LzgoEXOwRRGGZUoxgkv8phKBbGJU8PYGF3vtK2zHx34kNWlN1BVqgHb-SyeilQSFlM-oDc71DjrvYMia11ZK7fNKMm-A2ZDwGwfcKAv9-JO15D_sj_FBuBqB9iu_df0Ba95e54</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Iannello, Mariangela</creator><creator>Forni, Giobbe</creator><creator>Piccinini, Giovanni</creator><creator>Xu, Ran</creator><creator>Martelossi, Jacopo</creator><creator>Ghiselli, Fabrizio</creator><creator>Milani, Liliana</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1680-8616</orcidid><orcidid>https://orcid.org/0000-0001-5052-2075</orcidid><orcidid>https://orcid.org/0000-0001-5736-1024</orcidid></search><sort><creationdate>20231101</creationdate><title>Signatures of Extreme Longevity: A Perspective from Bivalve Molecular Evolution</title><author>Iannello, Mariangela ; Forni, Giobbe ; Piccinini, Giovanni ; Xu, Ran ; Martelossi, Jacopo ; Ghiselli, Fabrizio ; Milani, Liliana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-93c536b3ddb1a46b4b39e25e4ca5bdf4eb5d4ecfcaca7a3404fd216ae2c29c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aging - physiology</topic><topic>Animals</topic><topic>Bivalvia - genetics</topic><topic>Hypoxia</topic><topic>Longevity - genetics</topic><toplevel>online_resources</toplevel><creatorcontrib>Iannello, Mariangela</creatorcontrib><creatorcontrib>Forni, Giobbe</creatorcontrib><creatorcontrib>Piccinini, Giovanni</creatorcontrib><creatorcontrib>Xu, Ran</creatorcontrib><creatorcontrib>Martelossi, Jacopo</creatorcontrib><creatorcontrib>Ghiselli, Fabrizio</creatorcontrib><creatorcontrib>Milani, Liliana</creatorcontrib><collection>Oxford University Press Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Genome biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iannello, Mariangela</au><au>Forni, Giobbe</au><au>Piccinini, Giovanni</au><au>Xu, Ran</au><au>Martelossi, Jacopo</au><au>Ghiselli, Fabrizio</au><au>Milani, Liliana</au><au>Alba, Mar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signatures of Extreme Longevity: A Perspective from Bivalve Molecular Evolution</atitle><jtitle>Genome biology and evolution</jtitle><addtitle>Genome Biol Evol</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>15</volume><issue>11</issue><issn>1759-6653</issn><eissn>1759-6653</eissn><abstract>Abstract
Among Metazoa, bivalves have the highest lifespan disparity, ranging from 1 to 500+ years, making them an exceptional testing ground to understand mechanisms underlying aging and the evolution of extended longevity. Nevertheless, comparative molecular evolution has been an overlooked approach in this instance. Here, we leveraged transcriptomic resources spanning 30 bivalve species to unravel the signatures of convergent molecular evolution in four long-lived species: Margaritifera margaritifera, Elliptio complanata, Lampsilis siliquoidea, and Arctica islandica (the latter represents the longest-lived noncolonial metazoan known so far). We applied a comprehensive approach—which included inference of convergent dN/dS, convergent positive selection, and convergent amino acid substitution—with a strong focus on the reduction of false positives. Genes with convergent evolution in long-lived bivalves show more physical and functional interactions to each other than expected, suggesting that they are biologically connected; this interaction network is enriched in genes for which a role in longevity has been experimentally supported in other species. This suggests that genes in the network are involved in extended longevity in bivalves and, consequently, that the mechanisms underlying extended longevity are—at least partially—shared across Metazoa. Although we believe that an integration of different genes and pathways is required for the extended longevity phenotype, we highlight the potential central roles of genes involved in cell proliferation control, translational machinery, and response to hypoxia, in lifespan extension.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>37647860</pmid><doi>10.1093/gbe/evad159</doi><orcidid>https://orcid.org/0000-0002-1680-8616</orcidid><orcidid>https://orcid.org/0000-0001-5052-2075</orcidid><orcidid>https://orcid.org/0000-0001-5736-1024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-6653 |
ispartof | Genome biology and evolution, 2023-11, Vol.15 (11) |
issn | 1759-6653 1759-6653 |
language | eng |
recordid | cdi_proquest_miscellaneous_2859603214 |
source | MEDLINE; Free E-Journal (出版社公開部分のみ); DOAJ Directory of Open Access Journals; Oxford University Press Open Access; PubMed Central |
subjects | Aging - physiology Animals Bivalvia - genetics Hypoxia Longevity - genetics |
title | Signatures of Extreme Longevity: A Perspective from Bivalve Molecular Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signatures%20of%20Extreme%20Longevity:%20A%20Perspective%20from%20Bivalve%20Molecular%20Evolution&rft.jtitle=Genome%20biology%20and%20evolution&rft.au=Iannello,%20Mariangela&rft.date=2023-11-01&rft.volume=15&rft.issue=11&rft.issn=1759-6653&rft.eissn=1759-6653&rft_id=info:doi/10.1093/gbe/evad159&rft_dat=%3Cproquest_cross%3E2859603214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859603214&rft_id=info:pmid/37647860&rft_oup_id=10.1093/gbe/evad159&rfr_iscdi=true |