Identification of membrane engineering targets for increased butanol tolerance in Clostridium saccharoperbutylacetonicum

There is a growing interest in the use of microbial cell factories to produce butanol, an industrial solvent and platform chemical. Biobutanol can also be used as a biofuel and represents a cleaner and more sustainable alternative to the use of conventional fossil fuels. Solventogenic Clostridia are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Biomembranes 2023-12, Vol.1865 (8), p.184217-184217, Article 184217
Hauptverfasser: Linney, John A., Routledge, Sarah J., Connell, Simon D., Larson, Tony R., Pitt, Andrew R., Jenkinson, Elizabeth R., Goddard, Alan D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184217
container_issue 8
container_start_page 184217
container_title Biochimica et biophysica acta. Biomembranes
container_volume 1865
creator Linney, John A.
Routledge, Sarah J.
Connell, Simon D.
Larson, Tony R.
Pitt, Andrew R.
Jenkinson, Elizabeth R.
Goddard, Alan D.
description There is a growing interest in the use of microbial cell factories to produce butanol, an industrial solvent and platform chemical. Biobutanol can also be used as a biofuel and represents a cleaner and more sustainable alternative to the use of conventional fossil fuels. Solventogenic Clostridia are the most popular microorganisms used due to the native expression of butanol synthesis pathways. A major drawback to the wide scale implementation and development of these technologies is the toxicity of butanol. Various membrane properties and related functions are perturbed by the interaction of butanol with the cell membrane, causing lower yields and higher purification costs. This is ultimately why the technology remains underemployed. This study aimed to develop a deeper understanding of butanol toxicity at the membrane to determine future targets for membrane engineering. Changes to the lipidome in Clostridium saccharoperbutylacetonicum N1–4 (HMT) throughout butanol fermentation were investigated with thin layer chromatography and mass spectrometry. By the end of fermentation, levels of phosphatidylglycerol lipids had increased significantly, suggesting an important role of these lipid species in tolerance to butanol. Using membrane models and in vitro assays to investigate characteristics such as permeability, fluidity, and swelling, it was found that altering the composition of membrane models can convey tolerance to butanol, and that modulating membrane fluidity appears to be a key factor. Data presented here will ultimately help to inform rational strain engineering efforts to produce more robust strains capable of producing higher butanol titres. [Display omitted] •Butanol causes membrane damage through intercalation and pore formation.•The Clostridial lipidome changes significantly during butanol fermentation.•The ratio of PE:PG headgroups appears important for butanol tolerance.•This reveals targets for future membrane engineering strategies.
doi_str_mv 10.1016/j.bbamem.2023.184217
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2859603213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005273623000998</els_id><sourcerecordid>2859603213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1577429e1f0c169d66b1d5bd2ed666c33f6c0cb74d32ff77e2dfd3b831157ca43</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpoNsk_6AHHXPxRh-27L0UwpK2gUAuyVnIo9FWiy1tJbl0_320uOecZmDe54V5CPnG2ZYzru6P23E0M85bwYTc8qEVvP9ENnzod41QrfhMNoyxrhG9VF_I15yPrGKt6Dbk35PFULzzYIqPgUZHa9GYTECK4eADYvLhQItJByyZupioD5DQZLR0XIoJcaIlTlgRwHqj-ynmkrz1y0yzAfhtUjxhqtnzZABLDB6W-YZcOTNlvP0_r8nbj8fX_a_m-eXn0_7huQE5dKXhXd-3YofcMeBqZ5Uaue1GK7CuCqR0ChiMfWulcK7vUVhn5ThIXkkwrbwmd2vvKcU_C-aiZ58Bp6l-GJesxdDtFJOCyxpt1yikmHNCp0_JzyadNWf6Ilof9SpaX0TrVXTFvq8Y1jf-ekw6g8cqw_qEULSN_uOCd4PQjBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859603213</pqid></control><display><type>article</type><title>Identification of membrane engineering targets for increased butanol tolerance in Clostridium saccharoperbutylacetonicum</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Linney, John A. ; Routledge, Sarah J. ; Connell, Simon D. ; Larson, Tony R. ; Pitt, Andrew R. ; Jenkinson, Elizabeth R. ; Goddard, Alan D.</creator><creatorcontrib>Linney, John A. ; Routledge, Sarah J. ; Connell, Simon D. ; Larson, Tony R. ; Pitt, Andrew R. ; Jenkinson, Elizabeth R. ; Goddard, Alan D.</creatorcontrib><description>There is a growing interest in the use of microbial cell factories to produce butanol, an industrial solvent and platform chemical. Biobutanol can also be used as a biofuel and represents a cleaner and more sustainable alternative to the use of conventional fossil fuels. Solventogenic Clostridia are the most popular microorganisms used due to the native expression of butanol synthesis pathways. A major drawback to the wide scale implementation and development of these technologies is the toxicity of butanol. Various membrane properties and related functions are perturbed by the interaction of butanol with the cell membrane, causing lower yields and higher purification costs. This is ultimately why the technology remains underemployed. This study aimed to develop a deeper understanding of butanol toxicity at the membrane to determine future targets for membrane engineering. Changes to the lipidome in Clostridium saccharoperbutylacetonicum N1–4 (HMT) throughout butanol fermentation were investigated with thin layer chromatography and mass spectrometry. By the end of fermentation, levels of phosphatidylglycerol lipids had increased significantly, suggesting an important role of these lipid species in tolerance to butanol. Using membrane models and in vitro assays to investigate characteristics such as permeability, fluidity, and swelling, it was found that altering the composition of membrane models can convey tolerance to butanol, and that modulating membrane fluidity appears to be a key factor. Data presented here will ultimately help to inform rational strain engineering efforts to produce more robust strains capable of producing higher butanol titres. [Display omitted] •Butanol causes membrane damage through intercalation and pore formation.•The Clostridial lipidome changes significantly during butanol fermentation.•The ratio of PE:PG headgroups appears important for butanol tolerance.•This reveals targets for future membrane engineering strategies.</description><identifier>ISSN: 0005-2736</identifier><identifier>EISSN: 1879-2642</identifier><identifier>DOI: 10.1016/j.bbamem.2023.184217</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Atomic force microscopy ; Butanol toxicity ; Clostridia ; In vitro stability assays ; Lipid membrane ; Lipidomics</subject><ispartof>Biochimica et biophysica acta. Biomembranes, 2023-12, Vol.1865 (8), p.184217-184217, Article 184217</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1577429e1f0c169d66b1d5bd2ed666c33f6c0cb74d32ff77e2dfd3b831157ca43</citedby><cites>FETCH-LOGICAL-c385t-1577429e1f0c169d66b1d5bd2ed666c33f6c0cb74d32ff77e2dfd3b831157ca43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbamem.2023.184217$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Linney, John A.</creatorcontrib><creatorcontrib>Routledge, Sarah J.</creatorcontrib><creatorcontrib>Connell, Simon D.</creatorcontrib><creatorcontrib>Larson, Tony R.</creatorcontrib><creatorcontrib>Pitt, Andrew R.</creatorcontrib><creatorcontrib>Jenkinson, Elizabeth R.</creatorcontrib><creatorcontrib>Goddard, Alan D.</creatorcontrib><title>Identification of membrane engineering targets for increased butanol tolerance in Clostridium saccharoperbutylacetonicum</title><title>Biochimica et biophysica acta. Biomembranes</title><description>There is a growing interest in the use of microbial cell factories to produce butanol, an industrial solvent and platform chemical. Biobutanol can also be used as a biofuel and represents a cleaner and more sustainable alternative to the use of conventional fossil fuels. Solventogenic Clostridia are the most popular microorganisms used due to the native expression of butanol synthesis pathways. A major drawback to the wide scale implementation and development of these technologies is the toxicity of butanol. Various membrane properties and related functions are perturbed by the interaction of butanol with the cell membrane, causing lower yields and higher purification costs. This is ultimately why the technology remains underemployed. This study aimed to develop a deeper understanding of butanol toxicity at the membrane to determine future targets for membrane engineering. Changes to the lipidome in Clostridium saccharoperbutylacetonicum N1–4 (HMT) throughout butanol fermentation were investigated with thin layer chromatography and mass spectrometry. By the end of fermentation, levels of phosphatidylglycerol lipids had increased significantly, suggesting an important role of these lipid species in tolerance to butanol. Using membrane models and in vitro assays to investigate characteristics such as permeability, fluidity, and swelling, it was found that altering the composition of membrane models can convey tolerance to butanol, and that modulating membrane fluidity appears to be a key factor. Data presented here will ultimately help to inform rational strain engineering efforts to produce more robust strains capable of producing higher butanol titres. [Display omitted] •Butanol causes membrane damage through intercalation and pore formation.•The Clostridial lipidome changes significantly during butanol fermentation.•The ratio of PE:PG headgroups appears important for butanol tolerance.•This reveals targets for future membrane engineering strategies.</description><subject>Atomic force microscopy</subject><subject>Butanol toxicity</subject><subject>Clostridia</subject><subject>In vitro stability assays</subject><subject>Lipid membrane</subject><subject>Lipidomics</subject><issn>0005-2736</issn><issn>1879-2642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpoNsk_6AHHXPxRh-27L0UwpK2gUAuyVnIo9FWiy1tJbl0_320uOecZmDe54V5CPnG2ZYzru6P23E0M85bwYTc8qEVvP9ENnzod41QrfhMNoyxrhG9VF_I15yPrGKt6Dbk35PFULzzYIqPgUZHa9GYTECK4eADYvLhQItJByyZupioD5DQZLR0XIoJcaIlTlgRwHqj-ynmkrz1y0yzAfhtUjxhqtnzZABLDB6W-YZcOTNlvP0_r8nbj8fX_a_m-eXn0_7huQE5dKXhXd-3YofcMeBqZ5Uaue1GK7CuCqR0ChiMfWulcK7vUVhn5ThIXkkwrbwmd2vvKcU_C-aiZ58Bp6l-GJesxdDtFJOCyxpt1yikmHNCp0_JzyadNWf6Ilof9SpaX0TrVXTFvq8Y1jf-ekw6g8cqw_qEULSN_uOCd4PQjBo</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Linney, John A.</creator><creator>Routledge, Sarah J.</creator><creator>Connell, Simon D.</creator><creator>Larson, Tony R.</creator><creator>Pitt, Andrew R.</creator><creator>Jenkinson, Elizabeth R.</creator><creator>Goddard, Alan D.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202312</creationdate><title>Identification of membrane engineering targets for increased butanol tolerance in Clostridium saccharoperbutylacetonicum</title><author>Linney, John A. ; Routledge, Sarah J. ; Connell, Simon D. ; Larson, Tony R. ; Pitt, Andrew R. ; Jenkinson, Elizabeth R. ; Goddard, Alan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1577429e1f0c169d66b1d5bd2ed666c33f6c0cb74d32ff77e2dfd3b831157ca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic force microscopy</topic><topic>Butanol toxicity</topic><topic>Clostridia</topic><topic>In vitro stability assays</topic><topic>Lipid membrane</topic><topic>Lipidomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linney, John A.</creatorcontrib><creatorcontrib>Routledge, Sarah J.</creatorcontrib><creatorcontrib>Connell, Simon D.</creatorcontrib><creatorcontrib>Larson, Tony R.</creatorcontrib><creatorcontrib>Pitt, Andrew R.</creatorcontrib><creatorcontrib>Jenkinson, Elizabeth R.</creatorcontrib><creatorcontrib>Goddard, Alan D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochimica et biophysica acta. Biomembranes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linney, John A.</au><au>Routledge, Sarah J.</au><au>Connell, Simon D.</au><au>Larson, Tony R.</au><au>Pitt, Andrew R.</au><au>Jenkinson, Elizabeth R.</au><au>Goddard, Alan D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of membrane engineering targets for increased butanol tolerance in Clostridium saccharoperbutylacetonicum</atitle><jtitle>Biochimica et biophysica acta. Biomembranes</jtitle><date>2023-12</date><risdate>2023</risdate><volume>1865</volume><issue>8</issue><spage>184217</spage><epage>184217</epage><pages>184217-184217</pages><artnum>184217</artnum><issn>0005-2736</issn><eissn>1879-2642</eissn><abstract>There is a growing interest in the use of microbial cell factories to produce butanol, an industrial solvent and platform chemical. Biobutanol can also be used as a biofuel and represents a cleaner and more sustainable alternative to the use of conventional fossil fuels. Solventogenic Clostridia are the most popular microorganisms used due to the native expression of butanol synthesis pathways. A major drawback to the wide scale implementation and development of these technologies is the toxicity of butanol. Various membrane properties and related functions are perturbed by the interaction of butanol with the cell membrane, causing lower yields and higher purification costs. This is ultimately why the technology remains underemployed. This study aimed to develop a deeper understanding of butanol toxicity at the membrane to determine future targets for membrane engineering. Changes to the lipidome in Clostridium saccharoperbutylacetonicum N1–4 (HMT) throughout butanol fermentation were investigated with thin layer chromatography and mass spectrometry. By the end of fermentation, levels of phosphatidylglycerol lipids had increased significantly, suggesting an important role of these lipid species in tolerance to butanol. Using membrane models and in vitro assays to investigate characteristics such as permeability, fluidity, and swelling, it was found that altering the composition of membrane models can convey tolerance to butanol, and that modulating membrane fluidity appears to be a key factor. Data presented here will ultimately help to inform rational strain engineering efforts to produce more robust strains capable of producing higher butanol titres. [Display omitted] •Butanol causes membrane damage through intercalation and pore formation.•The Clostridial lipidome changes significantly during butanol fermentation.•The ratio of PE:PG headgroups appears important for butanol tolerance.•This reveals targets for future membrane engineering strategies.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.bbamem.2023.184217</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-2736
ispartof Biochimica et biophysica acta. Biomembranes, 2023-12, Vol.1865 (8), p.184217-184217, Article 184217
issn 0005-2736
1879-2642
language eng
recordid cdi_proquest_miscellaneous_2859603213
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Atomic force microscopy
Butanol toxicity
Clostridia
In vitro stability assays
Lipid membrane
Lipidomics
title Identification of membrane engineering targets for increased butanol tolerance in Clostridium saccharoperbutylacetonicum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20membrane%20engineering%20targets%20for%20increased%20butanol%20tolerance%20in%20Clostridium%20saccharoperbutylacetonicum&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Biomembranes&rft.au=Linney,%20John%20A.&rft.date=2023-12&rft.volume=1865&rft.issue=8&rft.spage=184217&rft.epage=184217&rft.pages=184217-184217&rft.artnum=184217&rft.issn=0005-2736&rft.eissn=1879-2642&rft_id=info:doi/10.1016/j.bbamem.2023.184217&rft_dat=%3Cproquest_cross%3E2859603213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859603213&rft_id=info:pmid/&rft_els_id=S0005273623000998&rfr_iscdi=true