Metabolome and Transcriptome Analysis of Sulfur-Induced Kiwifruit Stem Laccase Gene Involved in Syringyl Lignin Synthesis against Bacterial Canker

Kiwifruit canker is caused by Pseudomonas syringae pv. actinidiae and is one of the most destructive diseases of kiwifruit worldwide. Sulfur can improve the deposit of lignin in kiwifruit stems and induce disease resistance, but the action mechanism at the molecular level remains unclear. This omics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2023-09, Vol.71 (36), p.13566-13576
Hauptverfasser: Zhang, Zhuzhu, Long, Youhua, Yin, Xianhui, Wang, Weizhen, Li, Wenzhi, Chen, Tingting, Chen, Jia, Chen, Xuetang, Wang, Bince, Ma, Jiling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13576
container_issue 36
container_start_page 13566
container_title Journal of agricultural and food chemistry
container_volume 71
creator Zhang, Zhuzhu
Long, Youhua
Yin, Xianhui
Wang, Weizhen
Li, Wenzhi
Chen, Tingting
Chen, Jia
Chen, Xuetang
Wang, Bince
Ma, Jiling
description Kiwifruit canker is caused by Pseudomonas syringae pv. actinidiae and is one of the most destructive diseases of kiwifruit worldwide. Sulfur can improve the deposit of lignin in kiwifruit stems and induce disease resistance, but the action mechanism at the molecular level remains unclear. This omics-based study revealed that sulfur-induced S lignin synthesis contributes to disease resistance. Histological staining verified sulfur-enhanced total lignin deposition in kiwifruit stems. High-performance liquid chromatography and confocal Raman microscopy showed that sulfur-activated S lignin was mainly deposited in the cell corner. Metabolome and transcriptome analysis revealed that the levels of phenylpropanoid pathway S lignin precursors sinapic acid and sinapyl alcohol were significantly increased and 16 laccase genes were upregulated. Sulfur-induced resistance defense promoted elevated laccase activity by activating the laccase genes, participating in sinapic acid and sinapyl alcohol substance synthesis, and ultimately polymerizing S lignin at cell corner against kiwifruit canker disease.
doi_str_mv 10.1021/acs.jafc.3c02653
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2859602035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859602035</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-150104361aef2b6e5ed217fd220dfea3220a7b9251d395685e67c963b297a7c3</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiHQU7qkYIMfeB8lRDwigiiSfjXxjoOD4w22Nyi_wRezIbRUVzNz7hSHkEvORpwJfgM6jlZg9EhqJnIlj8iAK8EyxXl5TAasZ7JS5fyUnMW4YoyVqmAD8v2KCRata9dIwTd0HsBHHewm7Td3Htwu2khbQ2edM13IJr7pNDb0xX5ZEzqb6Czhmk5Ba4hIn9Ajnfht67Y9ZD2d7YL1y52jU7v0v7NP77j_CUuwPiZ6DzphsODoGPwHhnNyYsBFvPjLIZk_PszHz9n07WkyvptmIIsqZVwxzm5lzgGNWOSosBG8MI0QrDEIsk8oFpVQvJGVykuFeaGrXC5EVUCh5ZBcHd5uQvvZYUz12kaNzoHHtou1KFWVM8Gk6lF2QHVoYwxo6k2wawi7mrN6b7_u7dd7-_Wf_b5yfaj8Xtou9Cbj__gPBlqKwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859602035</pqid></control><display><type>article</type><title>Metabolome and Transcriptome Analysis of Sulfur-Induced Kiwifruit Stem Laccase Gene Involved in Syringyl Lignin Synthesis against Bacterial Canker</title><source>American Chemical Society Journals</source><creator>Zhang, Zhuzhu ; Long, Youhua ; Yin, Xianhui ; Wang, Weizhen ; Li, Wenzhi ; Chen, Tingting ; Chen, Jia ; Chen, Xuetang ; Wang, Bince ; Ma, Jiling</creator><creatorcontrib>Zhang, Zhuzhu ; Long, Youhua ; Yin, Xianhui ; Wang, Weizhen ; Li, Wenzhi ; Chen, Tingting ; Chen, Jia ; Chen, Xuetang ; Wang, Bince ; Ma, Jiling</creatorcontrib><description>Kiwifruit canker is caused by Pseudomonas syringae pv. actinidiae and is one of the most destructive diseases of kiwifruit worldwide. Sulfur can improve the deposit of lignin in kiwifruit stems and induce disease resistance, but the action mechanism at the molecular level remains unclear. This omics-based study revealed that sulfur-induced S lignin synthesis contributes to disease resistance. Histological staining verified sulfur-enhanced total lignin deposition in kiwifruit stems. High-performance liquid chromatography and confocal Raman microscopy showed that sulfur-activated S lignin was mainly deposited in the cell corner. Metabolome and transcriptome analysis revealed that the levels of phenylpropanoid pathway S lignin precursors sinapic acid and sinapyl alcohol were significantly increased and 16 laccase genes were upregulated. Sulfur-induced resistance defense promoted elevated laccase activity by activating the laccase genes, participating in sinapic acid and sinapyl alcohol substance synthesis, and ultimately polymerizing S lignin at cell corner against kiwifruit canker disease.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/acs.jafc.3c02653</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Omics Technologies Applied to Agriculture and Food</subject><ispartof>Journal of agricultural and food chemistry, 2023-09, Vol.71 (36), p.13566-13576</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-150104361aef2b6e5ed217fd220dfea3220a7b9251d395685e67c963b297a7c3</citedby><cites>FETCH-LOGICAL-a379t-150104361aef2b6e5ed217fd220dfea3220a7b9251d395685e67c963b297a7c3</cites><orcidid>0009-0004-6430-3331 ; 0000-0001-7549-8374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jafc.3c02653$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jafc.3c02653$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhang, Zhuzhu</creatorcontrib><creatorcontrib>Long, Youhua</creatorcontrib><creatorcontrib>Yin, Xianhui</creatorcontrib><creatorcontrib>Wang, Weizhen</creatorcontrib><creatorcontrib>Li, Wenzhi</creatorcontrib><creatorcontrib>Chen, Tingting</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><creatorcontrib>Chen, Xuetang</creatorcontrib><creatorcontrib>Wang, Bince</creatorcontrib><creatorcontrib>Ma, Jiling</creatorcontrib><title>Metabolome and Transcriptome Analysis of Sulfur-Induced Kiwifruit Stem Laccase Gene Involved in Syringyl Lignin Synthesis against Bacterial Canker</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Kiwifruit canker is caused by Pseudomonas syringae pv. actinidiae and is one of the most destructive diseases of kiwifruit worldwide. Sulfur can improve the deposit of lignin in kiwifruit stems and induce disease resistance, but the action mechanism at the molecular level remains unclear. This omics-based study revealed that sulfur-induced S lignin synthesis contributes to disease resistance. Histological staining verified sulfur-enhanced total lignin deposition in kiwifruit stems. High-performance liquid chromatography and confocal Raman microscopy showed that sulfur-activated S lignin was mainly deposited in the cell corner. Metabolome and transcriptome analysis revealed that the levels of phenylpropanoid pathway S lignin precursors sinapic acid and sinapyl alcohol were significantly increased and 16 laccase genes were upregulated. Sulfur-induced resistance defense promoted elevated laccase activity by activating the laccase genes, participating in sinapic acid and sinapyl alcohol substance synthesis, and ultimately polymerizing S lignin at cell corner against kiwifruit canker disease.</description><subject>Omics Technologies Applied to Agriculture and Food</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEiHQU7qkYIMfeB8lRDwigiiSfjXxjoOD4w22Nyi_wRezIbRUVzNz7hSHkEvORpwJfgM6jlZg9EhqJnIlj8iAK8EyxXl5TAasZ7JS5fyUnMW4YoyVqmAD8v2KCRata9dIwTd0HsBHHewm7Td3Htwu2khbQ2edM13IJr7pNDb0xX5ZEzqb6Czhmk5Ba4hIn9Ajnfht67Y9ZD2d7YL1y52jU7v0v7NP77j_CUuwPiZ6DzphsODoGPwHhnNyYsBFvPjLIZk_PszHz9n07WkyvptmIIsqZVwxzm5lzgGNWOSosBG8MI0QrDEIsk8oFpVQvJGVykuFeaGrXC5EVUCh5ZBcHd5uQvvZYUz12kaNzoHHtou1KFWVM8Gk6lF2QHVoYwxo6k2wawi7mrN6b7_u7dd7-_Wf_b5yfaj8Xtou9Cbj__gPBlqKwg</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Zhang, Zhuzhu</creator><creator>Long, Youhua</creator><creator>Yin, Xianhui</creator><creator>Wang, Weizhen</creator><creator>Li, Wenzhi</creator><creator>Chen, Tingting</creator><creator>Chen, Jia</creator><creator>Chen, Xuetang</creator><creator>Wang, Bince</creator><creator>Ma, Jiling</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0004-6430-3331</orcidid><orcidid>https://orcid.org/0000-0001-7549-8374</orcidid></search><sort><creationdate>20230913</creationdate><title>Metabolome and Transcriptome Analysis of Sulfur-Induced Kiwifruit Stem Laccase Gene Involved in Syringyl Lignin Synthesis against Bacterial Canker</title><author>Zhang, Zhuzhu ; Long, Youhua ; Yin, Xianhui ; Wang, Weizhen ; Li, Wenzhi ; Chen, Tingting ; Chen, Jia ; Chen, Xuetang ; Wang, Bince ; Ma, Jiling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-150104361aef2b6e5ed217fd220dfea3220a7b9251d395685e67c963b297a7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Omics Technologies Applied to Agriculture and Food</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhuzhu</creatorcontrib><creatorcontrib>Long, Youhua</creatorcontrib><creatorcontrib>Yin, Xianhui</creatorcontrib><creatorcontrib>Wang, Weizhen</creatorcontrib><creatorcontrib>Li, Wenzhi</creatorcontrib><creatorcontrib>Chen, Tingting</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><creatorcontrib>Chen, Xuetang</creatorcontrib><creatorcontrib>Wang, Bince</creatorcontrib><creatorcontrib>Ma, Jiling</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhuzhu</au><au>Long, Youhua</au><au>Yin, Xianhui</au><au>Wang, Weizhen</au><au>Li, Wenzhi</au><au>Chen, Tingting</au><au>Chen, Jia</au><au>Chen, Xuetang</au><au>Wang, Bince</au><au>Ma, Jiling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolome and Transcriptome Analysis of Sulfur-Induced Kiwifruit Stem Laccase Gene Involved in Syringyl Lignin Synthesis against Bacterial Canker</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2023-09-13</date><risdate>2023</risdate><volume>71</volume><issue>36</issue><spage>13566</spage><epage>13576</epage><pages>13566-13576</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><abstract>Kiwifruit canker is caused by Pseudomonas syringae pv. actinidiae and is one of the most destructive diseases of kiwifruit worldwide. Sulfur can improve the deposit of lignin in kiwifruit stems and induce disease resistance, but the action mechanism at the molecular level remains unclear. This omics-based study revealed that sulfur-induced S lignin synthesis contributes to disease resistance. Histological staining verified sulfur-enhanced total lignin deposition in kiwifruit stems. High-performance liquid chromatography and confocal Raman microscopy showed that sulfur-activated S lignin was mainly deposited in the cell corner. Metabolome and transcriptome analysis revealed that the levels of phenylpropanoid pathway S lignin precursors sinapic acid and sinapyl alcohol were significantly increased and 16 laccase genes were upregulated. Sulfur-induced resistance defense promoted elevated laccase activity by activating the laccase genes, participating in sinapic acid and sinapyl alcohol substance synthesis, and ultimately polymerizing S lignin at cell corner against kiwifruit canker disease.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jafc.3c02653</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0004-6430-3331</orcidid><orcidid>https://orcid.org/0000-0001-7549-8374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2023-09, Vol.71 (36), p.13566-13576
issn 0021-8561
1520-5118
language eng
recordid cdi_proquest_miscellaneous_2859602035
source American Chemical Society Journals
subjects Omics Technologies Applied to Agriculture and Food
title Metabolome and Transcriptome Analysis of Sulfur-Induced Kiwifruit Stem Laccase Gene Involved in Syringyl Lignin Synthesis against Bacterial Canker
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolome%20and%20Transcriptome%20Analysis%20of%20Sulfur-Induced%20Kiwifruit%20Stem%20Laccase%20Gene%20Involved%20in%20Syringyl%20Lignin%20Synthesis%20against%20Bacterial%20Canker&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Zhang,%20Zhuzhu&rft.date=2023-09-13&rft.volume=71&rft.issue=36&rft.spage=13566&rft.epage=13576&rft.pages=13566-13576&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/acs.jafc.3c02653&rft_dat=%3Cproquest_cross%3E2859602035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859602035&rft_id=info:pmid/&rfr_iscdi=true