Solving the radiation diffusion and energy balance equations using pseudo-transient continuation
We develop a scheme for the system coupling the radiation diffusion and matter energy balance equations. The method is based on fully implicit, first-order, backward Euler differencing; Picard–Newton iterations solve the nonlinear system. We show that iterating on the radiation energy density and th...
Gespeichert in:
Veröffentlicht in: | Journal of quantitative spectroscopy & radiative transfer 2005, Vol.90 (1), p.1-28 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of quantitative spectroscopy & radiative transfer |
container_volume | 90 |
creator | Shestakov, A.I. Greenough, J.A. Howell, L.H. |
description | We develop a scheme for the system coupling the radiation diffusion and matter energy balance equations. The method is based on fully implicit, first-order, backward Euler differencing; Picard–Newton iterations solve the nonlinear system. We show that iterating on the radiation energy density and the emission source is more robust. Since the Picard–Newton scheme may not converge for all initial conditions and time steps, pseudo-transient continuation (
Ψtc) is introduced. The combined
Ψtc–Picard–Newton scheme is analyzed. We derive conditions on the
Ψtc parameter that guarantee physically meaningful iterates, e.g., positive energies. Successive
Ψtc iterates are bounded and the radiation energy density and emission source tend to equilibrate. The scheme is incorporated into a multiply dimensioned, massively parallel, Eulerian, radiation–hydrodynamic computer program with automatic mesh refinement (AMR). Three examples are presented that exemplify the scheme's performance. (1) The Pomraning test problem that models radiation flow into cold matter. (2) A similar, but more realistic problem simulating the propagation of an ionization front into tenuous hydrogen gas with a Saha model for the equation-of-state. (3) A 2D axisymmetric (
R,
Z) simulation with real materials featuring jetting, radiatively driven, interacting shocks. |
doi_str_mv | 10.1016/j.jqsrt.2004.04.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28593915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022407304001190</els_id><sourcerecordid>28593915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-2cf7e79cf37dc1cddcc89cd4798ceefe6f74e2ab77bdeff383d1643af728f0c43</originalsourceid><addsrcrecordid>eNqFkT9PwzAQxS0EEqXwCVgyIZYUO07ieGBAFf-kSgzAbNzzubhqndZ2kPrtSVrmIp10N_ze0-k9Qq4ZnTDK6rvlZLmNIU0KSsvJMEyckBFrhMwZr4pTMqK0KPKSCn5OLmJcUko5Z_WIfL23qx_nF1n6xixo43Ryrc-Ms7aLw6W9ydBjWOyyuV5pD5jhtttTMeuRXrqJ2Jk2T0H76NCnDFqfnD9Al-TM6lXEq789Jp9Pjx_Tl3z29vw6fZjlwGWd8gKsQCHBcmGAgTEAjQRTCtkAosXaihILPRdibtBa3nDD6pJrK4rGUij5mNwcfDeh3XYYk1q7CLjqX8a2i6poKsklq3rw9ijYp1Y1ZSUk-9eTiVryphI9yA8ghDbGgFZtglvrsFOMqqEhtVT7htTQkBqGDar7gwr7XH4cBhWhzw_QuICQlGndUf0v8qSegw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17693857</pqid></control><display><type>article</type><title>Solving the radiation diffusion and energy balance equations using pseudo-transient continuation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Shestakov, A.I. ; Greenough, J.A. ; Howell, L.H.</creator><creatorcontrib>Shestakov, A.I. ; Greenough, J.A. ; Howell, L.H.</creatorcontrib><description>We develop a scheme for the system coupling the radiation diffusion and matter energy balance equations. The method is based on fully implicit, first-order, backward Euler differencing; Picard–Newton iterations solve the nonlinear system. We show that iterating on the radiation energy density and the emission source is more robust. Since the Picard–Newton scheme may not converge for all initial conditions and time steps, pseudo-transient continuation (
Ψtc) is introduced. The combined
Ψtc–Picard–Newton scheme is analyzed. We derive conditions on the
Ψtc parameter that guarantee physically meaningful iterates, e.g., positive energies. Successive
Ψtc iterates are bounded and the radiation energy density and emission source tend to equilibrate. The scheme is incorporated into a multiply dimensioned, massively parallel, Eulerian, radiation–hydrodynamic computer program with automatic mesh refinement (AMR). Three examples are presented that exemplify the scheme's performance. (1) The Pomraning test problem that models radiation flow into cold matter. (2) A similar, but more realistic problem simulating the propagation of an ionization front into tenuous hydrogen gas with a Saha model for the equation-of-state. (3) A 2D axisymmetric (
R,
Z) simulation with real materials featuring jetting, radiatively driven, interacting shocks.</description><identifier>ISSN: 0022-4073</identifier><identifier>EISSN: 1879-1352</identifier><identifier>DOI: 10.1016/j.jqsrt.2004.04.017</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Pseudo transient continuation ; Radiation diffusion</subject><ispartof>Journal of quantitative spectroscopy & radiative transfer, 2005, Vol.90 (1), p.1-28</ispartof><rights>2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-2cf7e79cf37dc1cddcc89cd4798ceefe6f74e2ab77bdeff383d1643af728f0c43</citedby><cites>FETCH-LOGICAL-c396t-2cf7e79cf37dc1cddcc89cd4798ceefe6f74e2ab77bdeff383d1643af728f0c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jqsrt.2004.04.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4022,27922,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Shestakov, A.I.</creatorcontrib><creatorcontrib>Greenough, J.A.</creatorcontrib><creatorcontrib>Howell, L.H.</creatorcontrib><title>Solving the radiation diffusion and energy balance equations using pseudo-transient continuation</title><title>Journal of quantitative spectroscopy & radiative transfer</title><description>We develop a scheme for the system coupling the radiation diffusion and matter energy balance equations. The method is based on fully implicit, first-order, backward Euler differencing; Picard–Newton iterations solve the nonlinear system. We show that iterating on the radiation energy density and the emission source is more robust. Since the Picard–Newton scheme may not converge for all initial conditions and time steps, pseudo-transient continuation (
Ψtc) is introduced. The combined
Ψtc–Picard–Newton scheme is analyzed. We derive conditions on the
Ψtc parameter that guarantee physically meaningful iterates, e.g., positive energies. Successive
Ψtc iterates are bounded and the radiation energy density and emission source tend to equilibrate. The scheme is incorporated into a multiply dimensioned, massively parallel, Eulerian, radiation–hydrodynamic computer program with automatic mesh refinement (AMR). Three examples are presented that exemplify the scheme's performance. (1) The Pomraning test problem that models radiation flow into cold matter. (2) A similar, but more realistic problem simulating the propagation of an ionization front into tenuous hydrogen gas with a Saha model for the equation-of-state. (3) A 2D axisymmetric (
R,
Z) simulation with real materials featuring jetting, radiatively driven, interacting shocks.</description><subject>Pseudo transient continuation</subject><subject>Radiation diffusion</subject><issn>0022-4073</issn><issn>1879-1352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkT9PwzAQxS0EEqXwCVgyIZYUO07ieGBAFf-kSgzAbNzzubhqndZ2kPrtSVrmIp10N_ze0-k9Qq4ZnTDK6rvlZLmNIU0KSsvJMEyckBFrhMwZr4pTMqK0KPKSCn5OLmJcUko5Z_WIfL23qx_nF1n6xixo43Ryrc-Ms7aLw6W9ydBjWOyyuV5pD5jhtttTMeuRXrqJ2Jk2T0H76NCnDFqfnD9Al-TM6lXEq789Jp9Pjx_Tl3z29vw6fZjlwGWd8gKsQCHBcmGAgTEAjQRTCtkAosXaihILPRdibtBa3nDD6pJrK4rGUij5mNwcfDeh3XYYk1q7CLjqX8a2i6poKsklq3rw9ijYp1Y1ZSUk-9eTiVryphI9yA8ghDbGgFZtglvrsFOMqqEhtVT7htTQkBqGDar7gwr7XH4cBhWhzw_QuICQlGndUf0v8qSegw</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Shestakov, A.I.</creator><creator>Greenough, J.A.</creator><creator>Howell, L.H.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2005</creationdate><title>Solving the radiation diffusion and energy balance equations using pseudo-transient continuation</title><author>Shestakov, A.I. ; Greenough, J.A. ; Howell, L.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-2cf7e79cf37dc1cddcc89cd4798ceefe6f74e2ab77bdeff383d1643af728f0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Pseudo transient continuation</topic><topic>Radiation diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shestakov, A.I.</creatorcontrib><creatorcontrib>Greenough, J.A.</creatorcontrib><creatorcontrib>Howell, L.H.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of quantitative spectroscopy & radiative transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shestakov, A.I.</au><au>Greenough, J.A.</au><au>Howell, L.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the radiation diffusion and energy balance equations using pseudo-transient continuation</atitle><jtitle>Journal of quantitative spectroscopy & radiative transfer</jtitle><date>2005</date><risdate>2005</risdate><volume>90</volume><issue>1</issue><spage>1</spage><epage>28</epage><pages>1-28</pages><issn>0022-4073</issn><eissn>1879-1352</eissn><abstract>We develop a scheme for the system coupling the radiation diffusion and matter energy balance equations. The method is based on fully implicit, first-order, backward Euler differencing; Picard–Newton iterations solve the nonlinear system. We show that iterating on the radiation energy density and the emission source is more robust. Since the Picard–Newton scheme may not converge for all initial conditions and time steps, pseudo-transient continuation (
Ψtc) is introduced. The combined
Ψtc–Picard–Newton scheme is analyzed. We derive conditions on the
Ψtc parameter that guarantee physically meaningful iterates, e.g., positive energies. Successive
Ψtc iterates are bounded and the radiation energy density and emission source tend to equilibrate. The scheme is incorporated into a multiply dimensioned, massively parallel, Eulerian, radiation–hydrodynamic computer program with automatic mesh refinement (AMR). Three examples are presented that exemplify the scheme's performance. (1) The Pomraning test problem that models radiation flow into cold matter. (2) A similar, but more realistic problem simulating the propagation of an ionization front into tenuous hydrogen gas with a Saha model for the equation-of-state. (3) A 2D axisymmetric (
R,
Z) simulation with real materials featuring jetting, radiatively driven, interacting shocks.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jqsrt.2004.04.017</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4073 |
ispartof | Journal of quantitative spectroscopy & radiative transfer, 2005, Vol.90 (1), p.1-28 |
issn | 0022-4073 1879-1352 |
language | eng |
recordid | cdi_proquest_miscellaneous_28593915 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Pseudo transient continuation Radiation diffusion |
title | Solving the radiation diffusion and energy balance equations using pseudo-transient continuation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20radiation%20diffusion%20and%20energy%20balance%20equations%20using%20pseudo-transient%20continuation&rft.jtitle=Journal%20of%20quantitative%20spectroscopy%20&%20radiative%20transfer&rft.au=Shestakov,%20A.I.&rft.date=2005&rft.volume=90&rft.issue=1&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.issn=0022-4073&rft.eissn=1879-1352&rft_id=info:doi/10.1016/j.jqsrt.2004.04.017&rft_dat=%3Cproquest_cross%3E28593915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17693857&rft_id=info:pmid/&rft_els_id=S0022407304001190&rfr_iscdi=true |