Intersecting a freeform surface with a general swept surface

We present efficient and robust algorithms for intersecting a rational parametric freeform surface with a general swept surface. A swept surface is given as a one-parameter family of cross-sectional curves. By computing the intersection between a freeform surface and each cross-sectional curve in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided design 2005-04, Vol.37 (5), p.473-483
Hauptverfasser: Seong, Joon-Kyung, Kim, Ku-Jin, Kim, Myung-Soo, Elber, Gershon, Martin, Ralph R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue 5
container_start_page 473
container_title Computer aided design
container_volume 37
creator Seong, Joon-Kyung
Kim, Ku-Jin
Kim, Myung-Soo
Elber, Gershon
Martin, Ralph R.
description We present efficient and robust algorithms for intersecting a rational parametric freeform surface with a general swept surface. A swept surface is given as a one-parameter family of cross-sectional curves. By computing the intersection between a freeform surface and each cross-sectional curve in the family, we can solve the intersection problem. We propose two approaches, which are closely related to each other. The first approach detects certain critical points on the intersection curve, and then connects them in a correct topology. The second approach converts the intersection problem to that of finding the zero-set of polynomial equations in the parameter space. We first present these algorithms for the special case of intersecting a freeform surface with a ruled surface or a ringed surface. We then consider the intersection with a general swept surface, where each cross-sectional curve may be defined as a rational parametric curve or as an implicit algebraic curve.
doi_str_mv 10.1016/j.cad.2004.10.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28590255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010448504002155</els_id><sourcerecordid>28590255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-21b354f817d4ebff61dda9caea4bbc45ada71af3ca6a18a07aab6ad0521fc7943</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7jlxC1hndh5CC6o4lGpEhc4Wxt7XVylSbETKv49rgpXTqudnVlpPsauOWQceHm7yTSaLAcQcc8AyhM243XVpHlZy1M2A-CQClHLc3YRwgYAcl40M3a_7EfygfTo-nWCifVEdvDbJEzeoqZk78aPqK-pJ49dEva0G_-Ol-zMYhfo6nfO2fvT49viJV29Pi8XD6tUFxUf05y3hRS25pUR1FpbcmOw0Ugo2lYLiQYrjrbQWCKvESrEtkQDMudWV40o5uzm-Hfnh8-Jwqi2LmjqOuxpmILKa9lALmU08qNR-yEET1btvNui_1Yc1IGT2qjISR04HaTIKWbujhmKDb4ceRW0o16TcT5iUWZw_6R_AFC1cUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28590255</pqid></control><display><type>article</type><title>Intersecting a freeform surface with a general swept surface</title><source>Elsevier ScienceDirect Journals</source><creator>Seong, Joon-Kyung ; Kim, Ku-Jin ; Kim, Myung-Soo ; Elber, Gershon ; Martin, Ralph R.</creator><creatorcontrib>Seong, Joon-Kyung ; Kim, Ku-Jin ; Kim, Myung-Soo ; Elber, Gershon ; Martin, Ralph R.</creatorcontrib><description>We present efficient and robust algorithms for intersecting a rational parametric freeform surface with a general swept surface. A swept surface is given as a one-parameter family of cross-sectional curves. By computing the intersection between a freeform surface and each cross-sectional curve in the family, we can solve the intersection problem. We propose two approaches, which are closely related to each other. The first approach detects certain critical points on the intersection curve, and then connects them in a correct topology. The second approach converts the intersection problem to that of finding the zero-set of polynomial equations in the parameter space. We first present these algorithms for the special case of intersecting a freeform surface with a ruled surface or a ringed surface. We then consider the intersection with a general swept surface, where each cross-sectional curve may be defined as a rational parametric curve or as an implicit algebraic curve.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/j.cad.2004.10.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Freeform surfaces ; Ringed surfaces ; Ruled surfaces ; Surface–surface intersection ; Swept surfaces</subject><ispartof>Computer aided design, 2005-04, Vol.37 (5), p.473-483</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-21b354f817d4ebff61dda9caea4bbc45ada71af3ca6a18a07aab6ad0521fc7943</citedby><cites>FETCH-LOGICAL-c371t-21b354f817d4ebff61dda9caea4bbc45ada71af3ca6a18a07aab6ad0521fc7943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010448504002155$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Seong, Joon-Kyung</creatorcontrib><creatorcontrib>Kim, Ku-Jin</creatorcontrib><creatorcontrib>Kim, Myung-Soo</creatorcontrib><creatorcontrib>Elber, Gershon</creatorcontrib><creatorcontrib>Martin, Ralph R.</creatorcontrib><title>Intersecting a freeform surface with a general swept surface</title><title>Computer aided design</title><description>We present efficient and robust algorithms for intersecting a rational parametric freeform surface with a general swept surface. A swept surface is given as a one-parameter family of cross-sectional curves. By computing the intersection between a freeform surface and each cross-sectional curve in the family, we can solve the intersection problem. We propose two approaches, which are closely related to each other. The first approach detects certain critical points on the intersection curve, and then connects them in a correct topology. The second approach converts the intersection problem to that of finding the zero-set of polynomial equations in the parameter space. We first present these algorithms for the special case of intersecting a freeform surface with a ruled surface or a ringed surface. We then consider the intersection with a general swept surface, where each cross-sectional curve may be defined as a rational parametric curve or as an implicit algebraic curve.</description><subject>Freeform surfaces</subject><subject>Ringed surfaces</subject><subject>Ruled surfaces</subject><subject>Surface–surface intersection</subject><subject>Swept surfaces</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7jlxC1hndh5CC6o4lGpEhc4Wxt7XVylSbETKv49rgpXTqudnVlpPsauOWQceHm7yTSaLAcQcc8AyhM243XVpHlZy1M2A-CQClHLc3YRwgYAcl40M3a_7EfygfTo-nWCifVEdvDbJEzeoqZk78aPqK-pJ49dEva0G_-Ol-zMYhfo6nfO2fvT49viJV29Pi8XD6tUFxUf05y3hRS25pUR1FpbcmOw0Ugo2lYLiQYrjrbQWCKvESrEtkQDMudWV40o5uzm-Hfnh8-Jwqi2LmjqOuxpmILKa9lALmU08qNR-yEET1btvNui_1Yc1IGT2qjISR04HaTIKWbujhmKDb4ceRW0o16TcT5iUWZw_6R_AFC1cUg</recordid><startdate>20050415</startdate><enddate>20050415</enddate><creator>Seong, Joon-Kyung</creator><creator>Kim, Ku-Jin</creator><creator>Kim, Myung-Soo</creator><creator>Elber, Gershon</creator><creator>Martin, Ralph R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050415</creationdate><title>Intersecting a freeform surface with a general swept surface</title><author>Seong, Joon-Kyung ; Kim, Ku-Jin ; Kim, Myung-Soo ; Elber, Gershon ; Martin, Ralph R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-21b354f817d4ebff61dda9caea4bbc45ada71af3ca6a18a07aab6ad0521fc7943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Freeform surfaces</topic><topic>Ringed surfaces</topic><topic>Ruled surfaces</topic><topic>Surface–surface intersection</topic><topic>Swept surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seong, Joon-Kyung</creatorcontrib><creatorcontrib>Kim, Ku-Jin</creatorcontrib><creatorcontrib>Kim, Myung-Soo</creatorcontrib><creatorcontrib>Elber, Gershon</creatorcontrib><creatorcontrib>Martin, Ralph R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seong, Joon-Kyung</au><au>Kim, Ku-Jin</au><au>Kim, Myung-Soo</au><au>Elber, Gershon</au><au>Martin, Ralph R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intersecting a freeform surface with a general swept surface</atitle><jtitle>Computer aided design</jtitle><date>2005-04-15</date><risdate>2005</risdate><volume>37</volume><issue>5</issue><spage>473</spage><epage>483</epage><pages>473-483</pages><issn>0010-4485</issn><eissn>1879-2685</eissn><abstract>We present efficient and robust algorithms for intersecting a rational parametric freeform surface with a general swept surface. A swept surface is given as a one-parameter family of cross-sectional curves. By computing the intersection between a freeform surface and each cross-sectional curve in the family, we can solve the intersection problem. We propose two approaches, which are closely related to each other. The first approach detects certain critical points on the intersection curve, and then connects them in a correct topology. The second approach converts the intersection problem to that of finding the zero-set of polynomial equations in the parameter space. We first present these algorithms for the special case of intersecting a freeform surface with a ruled surface or a ringed surface. We then consider the intersection with a general swept surface, where each cross-sectional curve may be defined as a rational parametric curve or as an implicit algebraic curve.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cad.2004.10.006</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4485
ispartof Computer aided design, 2005-04, Vol.37 (5), p.473-483
issn 0010-4485
1879-2685
language eng
recordid cdi_proquest_miscellaneous_28590255
source Elsevier ScienceDirect Journals
subjects Freeform surfaces
Ringed surfaces
Ruled surfaces
Surface–surface intersection
Swept surfaces
title Intersecting a freeform surface with a general swept surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intersecting%20a%20freeform%20surface%20with%20a%20general%20swept%20surface&rft.jtitle=Computer%20aided%20design&rft.au=Seong,%20Joon-Kyung&rft.date=2005-04-15&rft.volume=37&rft.issue=5&rft.spage=473&rft.epage=483&rft.pages=473-483&rft.issn=0010-4485&rft.eissn=1879-2685&rft_id=info:doi/10.1016/j.cad.2004.10.006&rft_dat=%3Cproquest_cross%3E28590255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28590255&rft_id=info:pmid/&rft_els_id=S0010448504002155&rfr_iscdi=true