Intersecting a freeform surface with a general swept surface
We present efficient and robust algorithms for intersecting a rational parametric freeform surface with a general swept surface. A swept surface is given as a one-parameter family of cross-sectional curves. By computing the intersection between a freeform surface and each cross-sectional curve in th...
Gespeichert in:
Veröffentlicht in: | Computer aided design 2005-04, Vol.37 (5), p.473-483 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 483 |
---|---|
container_issue | 5 |
container_start_page | 473 |
container_title | Computer aided design |
container_volume | 37 |
creator | Seong, Joon-Kyung Kim, Ku-Jin Kim, Myung-Soo Elber, Gershon Martin, Ralph R. |
description | We present efficient and robust algorithms for intersecting a rational parametric freeform surface with a general swept surface. A swept surface is given as a one-parameter family of cross-sectional curves. By computing the intersection between a freeform surface and each cross-sectional curve in the family, we can solve the intersection problem. We propose two approaches, which are closely related to each other. The first approach detects certain critical points on the intersection curve, and then connects them in a correct topology. The second approach converts the intersection problem to that of finding the zero-set of polynomial equations in the parameter space. We first present these algorithms for the special case of intersecting a freeform surface with a ruled surface or a ringed surface. We then consider the intersection with a general swept surface, where each cross-sectional curve may be defined as a rational parametric curve or as an implicit algebraic curve. |
doi_str_mv | 10.1016/j.cad.2004.10.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28590255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010448504002155</els_id><sourcerecordid>28590255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-21b354f817d4ebff61dda9caea4bbc45ada71af3ca6a18a07aab6ad0521fc7943</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7jlxC1hndh5CC6o4lGpEhc4Wxt7XVylSbETKv49rgpXTqudnVlpPsauOWQceHm7yTSaLAcQcc8AyhM243XVpHlZy1M2A-CQClHLc3YRwgYAcl40M3a_7EfygfTo-nWCifVEdvDbJEzeoqZk78aPqK-pJ49dEva0G_-Ol-zMYhfo6nfO2fvT49viJV29Pi8XD6tUFxUf05y3hRS25pUR1FpbcmOw0Ugo2lYLiQYrjrbQWCKvESrEtkQDMudWV40o5uzm-Hfnh8-Jwqi2LmjqOuxpmILKa9lALmU08qNR-yEET1btvNui_1Yc1IGT2qjISR04HaTIKWbujhmKDb4ceRW0o16TcT5iUWZw_6R_AFC1cUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28590255</pqid></control><display><type>article</type><title>Intersecting a freeform surface with a general swept surface</title><source>Elsevier ScienceDirect Journals</source><creator>Seong, Joon-Kyung ; Kim, Ku-Jin ; Kim, Myung-Soo ; Elber, Gershon ; Martin, Ralph R.</creator><creatorcontrib>Seong, Joon-Kyung ; Kim, Ku-Jin ; Kim, Myung-Soo ; Elber, Gershon ; Martin, Ralph R.</creatorcontrib><description>We present efficient and robust algorithms for intersecting a rational parametric freeform surface with a general swept surface. A swept surface is given as a one-parameter family of cross-sectional curves. By computing the intersection between a freeform surface and each cross-sectional curve in the family, we can solve the intersection problem. We propose two approaches, which are closely related to each other. The first approach detects certain critical points on the intersection curve, and then connects them in a correct topology. The second approach converts the intersection problem to that of finding the zero-set of polynomial equations in the parameter space. We first present these algorithms for the special case of intersecting a freeform surface with a ruled surface or a ringed surface. We then consider the intersection with a general swept surface, where each cross-sectional curve may be defined as a rational parametric curve or as an implicit algebraic curve.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/j.cad.2004.10.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Freeform surfaces ; Ringed surfaces ; Ruled surfaces ; Surface–surface intersection ; Swept surfaces</subject><ispartof>Computer aided design, 2005-04, Vol.37 (5), p.473-483</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-21b354f817d4ebff61dda9caea4bbc45ada71af3ca6a18a07aab6ad0521fc7943</citedby><cites>FETCH-LOGICAL-c371t-21b354f817d4ebff61dda9caea4bbc45ada71af3ca6a18a07aab6ad0521fc7943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010448504002155$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Seong, Joon-Kyung</creatorcontrib><creatorcontrib>Kim, Ku-Jin</creatorcontrib><creatorcontrib>Kim, Myung-Soo</creatorcontrib><creatorcontrib>Elber, Gershon</creatorcontrib><creatorcontrib>Martin, Ralph R.</creatorcontrib><title>Intersecting a freeform surface with a general swept surface</title><title>Computer aided design</title><description>We present efficient and robust algorithms for intersecting a rational parametric freeform surface with a general swept surface. A swept surface is given as a one-parameter family of cross-sectional curves. By computing the intersection between a freeform surface and each cross-sectional curve in the family, we can solve the intersection problem. We propose two approaches, which are closely related to each other. The first approach detects certain critical points on the intersection curve, and then connects them in a correct topology. The second approach converts the intersection problem to that of finding the zero-set of polynomial equations in the parameter space. We first present these algorithms for the special case of intersecting a freeform surface with a ruled surface or a ringed surface. We then consider the intersection with a general swept surface, where each cross-sectional curve may be defined as a rational parametric curve or as an implicit algebraic curve.</description><subject>Freeform surfaces</subject><subject>Ringed surfaces</subject><subject>Ruled surfaces</subject><subject>Surface–surface intersection</subject><subject>Swept surfaces</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7jlxC1hndh5CC6o4lGpEhc4Wxt7XVylSbETKv49rgpXTqudnVlpPsauOWQceHm7yTSaLAcQcc8AyhM243XVpHlZy1M2A-CQClHLc3YRwgYAcl40M3a_7EfygfTo-nWCifVEdvDbJEzeoqZk78aPqK-pJ49dEva0G_-Ol-zMYhfo6nfO2fvT49viJV29Pi8XD6tUFxUf05y3hRS25pUR1FpbcmOw0Ugo2lYLiQYrjrbQWCKvESrEtkQDMudWV40o5uzm-Hfnh8-Jwqi2LmjqOuxpmILKa9lALmU08qNR-yEET1btvNui_1Yc1IGT2qjISR04HaTIKWbujhmKDb4ceRW0o16TcT5iUWZw_6R_AFC1cUg</recordid><startdate>20050415</startdate><enddate>20050415</enddate><creator>Seong, Joon-Kyung</creator><creator>Kim, Ku-Jin</creator><creator>Kim, Myung-Soo</creator><creator>Elber, Gershon</creator><creator>Martin, Ralph R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050415</creationdate><title>Intersecting a freeform surface with a general swept surface</title><author>Seong, Joon-Kyung ; Kim, Ku-Jin ; Kim, Myung-Soo ; Elber, Gershon ; Martin, Ralph R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-21b354f817d4ebff61dda9caea4bbc45ada71af3ca6a18a07aab6ad0521fc7943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Freeform surfaces</topic><topic>Ringed surfaces</topic><topic>Ruled surfaces</topic><topic>Surface–surface intersection</topic><topic>Swept surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seong, Joon-Kyung</creatorcontrib><creatorcontrib>Kim, Ku-Jin</creatorcontrib><creatorcontrib>Kim, Myung-Soo</creatorcontrib><creatorcontrib>Elber, Gershon</creatorcontrib><creatorcontrib>Martin, Ralph R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seong, Joon-Kyung</au><au>Kim, Ku-Jin</au><au>Kim, Myung-Soo</au><au>Elber, Gershon</au><au>Martin, Ralph R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intersecting a freeform surface with a general swept surface</atitle><jtitle>Computer aided design</jtitle><date>2005-04-15</date><risdate>2005</risdate><volume>37</volume><issue>5</issue><spage>473</spage><epage>483</epage><pages>473-483</pages><issn>0010-4485</issn><eissn>1879-2685</eissn><abstract>We present efficient and robust algorithms for intersecting a rational parametric freeform surface with a general swept surface. A swept surface is given as a one-parameter family of cross-sectional curves. By computing the intersection between a freeform surface and each cross-sectional curve in the family, we can solve the intersection problem. We propose two approaches, which are closely related to each other. The first approach detects certain critical points on the intersection curve, and then connects them in a correct topology. The second approach converts the intersection problem to that of finding the zero-set of polynomial equations in the parameter space. We first present these algorithms for the special case of intersecting a freeform surface with a ruled surface or a ringed surface. We then consider the intersection with a general swept surface, where each cross-sectional curve may be defined as a rational parametric curve or as an implicit algebraic curve.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cad.2004.10.006</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4485 |
ispartof | Computer aided design, 2005-04, Vol.37 (5), p.473-483 |
issn | 0010-4485 1879-2685 |
language | eng |
recordid | cdi_proquest_miscellaneous_28590255 |
source | Elsevier ScienceDirect Journals |
subjects | Freeform surfaces Ringed surfaces Ruled surfaces Surface–surface intersection Swept surfaces |
title | Intersecting a freeform surface with a general swept surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intersecting%20a%20freeform%20surface%20with%20a%20general%20swept%20surface&rft.jtitle=Computer%20aided%20design&rft.au=Seong,%20Joon-Kyung&rft.date=2005-04-15&rft.volume=37&rft.issue=5&rft.spage=473&rft.epage=483&rft.pages=473-483&rft.issn=0010-4485&rft.eissn=1879-2685&rft_id=info:doi/10.1016/j.cad.2004.10.006&rft_dat=%3Cproquest_cross%3E28590255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28590255&rft_id=info:pmid/&rft_els_id=S0010448504002155&rfr_iscdi=true |