Photodegradation of Rhodamine B using gallium hybrids as an efficient photocatalyst
Keeping in view the toxicity of the Rhodamine B, the present study is designed to remediate the water loaded with toxic dyes using gallium oxide and gallium hybrids as photocatalyst. Precipitation coupled with sonochemical method is adopted for the synthesis of gallium oxide while the post grafting...
Gespeichert in:
Veröffentlicht in: | Environmental monitoring and assessment 2023-09, Vol.195 (9), p.1106-1106, Article 1106 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1106 |
---|---|
container_issue | 9 |
container_start_page | 1106 |
container_title | Environmental monitoring and assessment |
container_volume | 195 |
creator | Parveen, Kousar Rafique, Uzaira Jamil, Ishrat Ashraf, Anam |
description | Keeping in view the toxicity of the Rhodamine B, the present study is designed to remediate the water loaded with toxic dyes using gallium oxide and gallium hybrids as photocatalyst. Precipitation coupled with sonochemical method is adopted for the synthesis of gallium oxide while the post grafting method is adopted for the synthesis of gallium hybrids with the indole and its derivatives. FTIR spectra showed the characteristic absorption bands of gallium oxide and gallium hybrids at 400–700 cm
−1
and 1400–1600 cm
−1
. SEM and XRD showed the micro-sized rectangular rod-shaped gallium oxide with rhombohedral geometry. The average crystallite size of gallium hybrids was 26–32 nm calculated using the Debye Scherrer and Williamson-Hal models. The BET isotherm of gallium hybrids revealed the adsorption type-IV and hysteresis loop (H3) proposing multilayer and mesoporous structures with increase in surface area from 26 m
2
/g of gallium oxide to 31 m
2
/g of gallium-indole, 35 m
2
/g of gallium-methyl indole, and 37 m
2
/g of gallium-carboxylic indole. XPS showed the presence of gallium (3–14%), oxygen (28–32%), nitrogen (23–46%), and carbon (9–46%). The gallium oxide and gallium hybrids showed 47–72% optimum degradation of Rhodamine B under 2 h of illumination at pH 7 and 0.03 mg/L. The degradation rate followed a Langmuir-Hinshelwood model with
R
2
> 0.9. |
doi_str_mv | 10.1007/s10661-023-11683-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2858990797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858504199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-7c76436b8124003db654ed6a1263f3c8f3968f8c9581edc6e84ab4075914a843</originalsourceid><addsrcrecordid>eNp9kM1KxDAYRYMoOI6-gKuAGzfRpEnzs1TxDwYUnX1I07SToW3GpF307e1MBcGF8MHdnHv5OABcEnxDMBa3iWDOCcIZRYRwSdF4BBYkFxRlKlfHYIEJF4hTrk7BWUpbjLESTC3A5_sm9KF0dTSl6X3oYKjgxyaUpvWdg_dwSL6rYW2axg8t3IxF9GWCZroOuqry1ruuh7v9ijW9acbUn4OTyjTJXfzkEqyfHtcPL2j19vz6cLdCluZZj4QVnFFeSJIxjGlZ8Jy5khuScVpRKyuquKykVbkkrrTcSWYKhkWuCDOS0SW4nmd3MXwNLvW69cm6pjGdC0PSmcylUlgoMaFXf9BtGGI3PXegcsyIUhOVzZSNIaXoKr2LvjVx1ATrvWY9a9aTZn3QrMepROdSmuCudvF3-p_WN2Ilf_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858504199</pqid></control><display><type>article</type><title>Photodegradation of Rhodamine B using gallium hybrids as an efficient photocatalyst</title><source>SpringerNature Journals</source><creator>Parveen, Kousar ; Rafique, Uzaira ; Jamil, Ishrat ; Ashraf, Anam</creator><creatorcontrib>Parveen, Kousar ; Rafique, Uzaira ; Jamil, Ishrat ; Ashraf, Anam</creatorcontrib><description>Keeping in view the toxicity of the Rhodamine B, the present study is designed to remediate the water loaded with toxic dyes using gallium oxide and gallium hybrids as photocatalyst. Precipitation coupled with sonochemical method is adopted for the synthesis of gallium oxide while the post grafting method is adopted for the synthesis of gallium hybrids with the indole and its derivatives. FTIR spectra showed the characteristic absorption bands of gallium oxide and gallium hybrids at 400–700 cm
−1
and 1400–1600 cm
−1
. SEM and XRD showed the micro-sized rectangular rod-shaped gallium oxide with rhombohedral geometry. The average crystallite size of gallium hybrids was 26–32 nm calculated using the Debye Scherrer and Williamson-Hal models. The BET isotherm of gallium hybrids revealed the adsorption type-IV and hysteresis loop (H3) proposing multilayer and mesoporous structures with increase in surface area from 26 m
2
/g of gallium oxide to 31 m
2
/g of gallium-indole, 35 m
2
/g of gallium-methyl indole, and 37 m
2
/g of gallium-carboxylic indole. XPS showed the presence of gallium (3–14%), oxygen (28–32%), nitrogen (23–46%), and carbon (9–46%). The gallium oxide and gallium hybrids showed 47–72% optimum degradation of Rhodamine B under 2 h of illumination at pH 7 and 0.03 mg/L. The degradation rate followed a Langmuir-Hinshelwood model with
R
2
> 0.9.</description><identifier>ISSN: 0167-6369</identifier><identifier>EISSN: 1573-2959</identifier><identifier>DOI: 10.1007/s10661-023-11683-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Absorption bands ; Absorption spectra ; Atmospheric Protection/Air Quality Control/Air Pollution ; Crystallites ; Crystals ; Degradation ; Dyes ; Earth and Environmental Science ; Ecology ; Ecotoxicology ; Environment ; Environmental Management ; Environmental monitoring ; Environmental science ; Gallium ; Gallium oxides ; Hybrids ; Hysteresis loops ; Indoles ; Monitoring/Environmental Analysis ; Multilayers ; Oxygen ; Photocatalysts ; Photodegradation ; Rhodamine ; Sonochemical reactions ; Synthesis ; Toxicity</subject><ispartof>Environmental monitoring and assessment, 2023-09, Vol.195 (9), p.1106-1106, Article 1106</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-7c76436b8124003db654ed6a1263f3c8f3968f8c9581edc6e84ab4075914a843</citedby><cites>FETCH-LOGICAL-c352t-7c76436b8124003db654ed6a1263f3c8f3968f8c9581edc6e84ab4075914a843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10661-023-11683-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10661-023-11683-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Parveen, Kousar</creatorcontrib><creatorcontrib>Rafique, Uzaira</creatorcontrib><creatorcontrib>Jamil, Ishrat</creatorcontrib><creatorcontrib>Ashraf, Anam</creatorcontrib><title>Photodegradation of Rhodamine B using gallium hybrids as an efficient photocatalyst</title><title>Environmental monitoring and assessment</title><addtitle>Environ Monit Assess</addtitle><description>Keeping in view the toxicity of the Rhodamine B, the present study is designed to remediate the water loaded with toxic dyes using gallium oxide and gallium hybrids as photocatalyst. Precipitation coupled with sonochemical method is adopted for the synthesis of gallium oxide while the post grafting method is adopted for the synthesis of gallium hybrids with the indole and its derivatives. FTIR spectra showed the characteristic absorption bands of gallium oxide and gallium hybrids at 400–700 cm
−1
and 1400–1600 cm
−1
. SEM and XRD showed the micro-sized rectangular rod-shaped gallium oxide with rhombohedral geometry. The average crystallite size of gallium hybrids was 26–32 nm calculated using the Debye Scherrer and Williamson-Hal models. The BET isotherm of gallium hybrids revealed the adsorption type-IV and hysteresis loop (H3) proposing multilayer and mesoporous structures with increase in surface area from 26 m
2
/g of gallium oxide to 31 m
2
/g of gallium-indole, 35 m
2
/g of gallium-methyl indole, and 37 m
2
/g of gallium-carboxylic indole. XPS showed the presence of gallium (3–14%), oxygen (28–32%), nitrogen (23–46%), and carbon (9–46%). The gallium oxide and gallium hybrids showed 47–72% optimum degradation of Rhodamine B under 2 h of illumination at pH 7 and 0.03 mg/L. The degradation rate followed a Langmuir-Hinshelwood model with
R
2
> 0.9.</description><subject>Absorption bands</subject><subject>Absorption spectra</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Degradation</subject><subject>Dyes</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Environmental monitoring</subject><subject>Environmental science</subject><subject>Gallium</subject><subject>Gallium oxides</subject><subject>Hybrids</subject><subject>Hysteresis loops</subject><subject>Indoles</subject><subject>Monitoring/Environmental Analysis</subject><subject>Multilayers</subject><subject>Oxygen</subject><subject>Photocatalysts</subject><subject>Photodegradation</subject><subject>Rhodamine</subject><subject>Sonochemical reactions</subject><subject>Synthesis</subject><subject>Toxicity</subject><issn>0167-6369</issn><issn>1573-2959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KxDAYRYMoOI6-gKuAGzfRpEnzs1TxDwYUnX1I07SToW3GpF307e1MBcGF8MHdnHv5OABcEnxDMBa3iWDOCcIZRYRwSdF4BBYkFxRlKlfHYIEJF4hTrk7BWUpbjLESTC3A5_sm9KF0dTSl6X3oYKjgxyaUpvWdg_dwSL6rYW2axg8t3IxF9GWCZroOuqry1ruuh7v9ijW9acbUn4OTyjTJXfzkEqyfHtcPL2j19vz6cLdCluZZj4QVnFFeSJIxjGlZ8Jy5khuScVpRKyuquKykVbkkrrTcSWYKhkWuCDOS0SW4nmd3MXwNLvW69cm6pjGdC0PSmcylUlgoMaFXf9BtGGI3PXegcsyIUhOVzZSNIaXoKr2LvjVx1ATrvWY9a9aTZn3QrMepROdSmuCudvF3-p_WN2Ilf_k</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Parveen, Kousar</creator><creator>Rafique, Uzaira</creator><creator>Jamil, Ishrat</creator><creator>Ashraf, Anam</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KL.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20230901</creationdate><title>Photodegradation of Rhodamine B using gallium hybrids as an efficient photocatalyst</title><author>Parveen, Kousar ; Rafique, Uzaira ; Jamil, Ishrat ; Ashraf, Anam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-7c76436b8124003db654ed6a1263f3c8f3968f8c9581edc6e84ab4075914a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption bands</topic><topic>Absorption spectra</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Degradation</topic><topic>Dyes</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Environmental monitoring</topic><topic>Environmental science</topic><topic>Gallium</topic><topic>Gallium oxides</topic><topic>Hybrids</topic><topic>Hysteresis loops</topic><topic>Indoles</topic><topic>Monitoring/Environmental Analysis</topic><topic>Multilayers</topic><topic>Oxygen</topic><topic>Photocatalysts</topic><topic>Photodegradation</topic><topic>Rhodamine</topic><topic>Sonochemical reactions</topic><topic>Synthesis</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parveen, Kousar</creatorcontrib><creatorcontrib>Rafique, Uzaira</creatorcontrib><creatorcontrib>Jamil, Ishrat</creatorcontrib><creatorcontrib>Ashraf, Anam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental monitoring and assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parveen, Kousar</au><au>Rafique, Uzaira</au><au>Jamil, Ishrat</au><au>Ashraf, Anam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photodegradation of Rhodamine B using gallium hybrids as an efficient photocatalyst</atitle><jtitle>Environmental monitoring and assessment</jtitle><stitle>Environ Monit Assess</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>195</volume><issue>9</issue><spage>1106</spage><epage>1106</epage><pages>1106-1106</pages><artnum>1106</artnum><issn>0167-6369</issn><eissn>1573-2959</eissn><abstract>Keeping in view the toxicity of the Rhodamine B, the present study is designed to remediate the water loaded with toxic dyes using gallium oxide and gallium hybrids as photocatalyst. Precipitation coupled with sonochemical method is adopted for the synthesis of gallium oxide while the post grafting method is adopted for the synthesis of gallium hybrids with the indole and its derivatives. FTIR spectra showed the characteristic absorption bands of gallium oxide and gallium hybrids at 400–700 cm
−1
and 1400–1600 cm
−1
. SEM and XRD showed the micro-sized rectangular rod-shaped gallium oxide with rhombohedral geometry. The average crystallite size of gallium hybrids was 26–32 nm calculated using the Debye Scherrer and Williamson-Hal models. The BET isotherm of gallium hybrids revealed the adsorption type-IV and hysteresis loop (H3) proposing multilayer and mesoporous structures with increase in surface area from 26 m
2
/g of gallium oxide to 31 m
2
/g of gallium-indole, 35 m
2
/g of gallium-methyl indole, and 37 m
2
/g of gallium-carboxylic indole. XPS showed the presence of gallium (3–14%), oxygen (28–32%), nitrogen (23–46%), and carbon (9–46%). The gallium oxide and gallium hybrids showed 47–72% optimum degradation of Rhodamine B under 2 h of illumination at pH 7 and 0.03 mg/L. The degradation rate followed a Langmuir-Hinshelwood model with
R
2
> 0.9.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10661-023-11683-y</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6369 |
ispartof | Environmental monitoring and assessment, 2023-09, Vol.195 (9), p.1106-1106, Article 1106 |
issn | 0167-6369 1573-2959 |
language | eng |
recordid | cdi_proquest_miscellaneous_2858990797 |
source | SpringerNature Journals |
subjects | Absorption bands Absorption spectra Atmospheric Protection/Air Quality Control/Air Pollution Crystallites Crystals Degradation Dyes Earth and Environmental Science Ecology Ecotoxicology Environment Environmental Management Environmental monitoring Environmental science Gallium Gallium oxides Hybrids Hysteresis loops Indoles Monitoring/Environmental Analysis Multilayers Oxygen Photocatalysts Photodegradation Rhodamine Sonochemical reactions Synthesis Toxicity |
title | Photodegradation of Rhodamine B using gallium hybrids as an efficient photocatalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photodegradation%20of%20Rhodamine%20B%20using%20gallium%20hybrids%20as%20an%20efficient%20photocatalyst&rft.jtitle=Environmental%20monitoring%20and%20assessment&rft.au=Parveen,%20Kousar&rft.date=2023-09-01&rft.volume=195&rft.issue=9&rft.spage=1106&rft.epage=1106&rft.pages=1106-1106&rft.artnum=1106&rft.issn=0167-6369&rft.eissn=1573-2959&rft_id=info:doi/10.1007/s10661-023-11683-y&rft_dat=%3Cproquest_cross%3E2858504199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858504199&rft_id=info:pmid/&rfr_iscdi=true |