Combination of Rapid Intrinsic Activity Measurements and Machine Learning as a Screening Approach for Multicomponent Electrocatalysts
Machine learning (ML) coupled with quantum chemistry calculations predicts catalyst properties with high accuracy; however, ML approaches in the design of multicomponent catalysts primarily rely on simulation data because obtaining sufficient experimental data in a short time is difficult. Herein, w...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-09, Vol.15 (36), p.42532-42540 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42540 |
---|---|
container_issue | 36 |
container_start_page | 42532 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Liu, Chen Ding, Yan Guan, Yanxue Tang, Jilin Jiang, Chunhuan Gao, Han Xu, Jianan Zhao, Jia Lu, Lehui |
description | Machine learning (ML) coupled with quantum chemistry calculations predicts catalyst properties with high accuracy; however, ML approaches in the design of multicomponent catalysts primarily rely on simulation data because obtaining sufficient experimental data in a short time is difficult. Herein, we developed a rapid screening strategy involving nanodroplet-mediated electrodeposition using a carbon nanocorn electrode as the support substrate that enables complete data collection for training artificial intelligence networks in one week. The inert support substrate ensures intrinsic activity measurement and operando characterization of the irreversible reconstruction of multinary alloy particles during the oxygen evolution reaction. Our approach works as a closed loop: catalyst synthesis–in situ measurement and characterization–database construction–ML analysis–catalyst design. Using artificial neural networks, the ML analysis revealed that the entropy values of multicomponent catalysts are proportional to their catalytic activity. The catalytic activities of high-entropy systems with different components varied little, and the overall catalytic activity was greater than that of the medium–low-entropy system. These findings will serve as a guideline for the design of catalysts. |
doi_str_mv | 10.1021/acsami.3c07442 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2858989882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858989882</sourcerecordid><originalsourceid>FETCH-LOGICAL-a262t-821aa17c2d0f6a624d3ab655bfd1e0e285fdf2e8b5a94408cf0921587ed1b0463</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrV495yhCa5L96PZYSv2AFsGPc5jNTjRlN1mTrNAf4P822uJN5jAzjzePN4-QS86mnAl-AypAZ6aZYrM8F0dkxOd5PqlEIY7_5jw_JWchbBkrM8GKEflauq42FqJxljpNn6A3DX2w0RsbjKILFc2niTu6QQiDxw5tDBRsQzeg3o1Fukbw1tg3Cgmnz8oj_q6Lvvcucah2nm6GNhrlut7ZJEBXLaronYII7S7EcE5ONLQBLw59TF5vVy_L-8n68e5huVhPQJQiJv8cgM-UaJguoRR5k0FdFkWtG44MRVXoRgus6gLSu6xSms0FL6oZNrxmeZmNydVeN1n7GDBE2ZmgsG3BohuCTArVPFUlEnW6pyrvQvCoZe9NB34nOZM_ect93vKQdzq43h8kXG7d4G365D_yN5dnhYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858989882</pqid></control><display><type>article</type><title>Combination of Rapid Intrinsic Activity Measurements and Machine Learning as a Screening Approach for Multicomponent Electrocatalysts</title><source>American Chemical Society Journals</source><creator>Liu, Chen ; Ding, Yan ; Guan, Yanxue ; Tang, Jilin ; Jiang, Chunhuan ; Gao, Han ; Xu, Jianan ; Zhao, Jia ; Lu, Lehui</creator><creatorcontrib>Liu, Chen ; Ding, Yan ; Guan, Yanxue ; Tang, Jilin ; Jiang, Chunhuan ; Gao, Han ; Xu, Jianan ; Zhao, Jia ; Lu, Lehui</creatorcontrib><description>Machine learning (ML) coupled with quantum chemistry calculations predicts catalyst properties with high accuracy; however, ML approaches in the design of multicomponent catalysts primarily rely on simulation data because obtaining sufficient experimental data in a short time is difficult. Herein, we developed a rapid screening strategy involving nanodroplet-mediated electrodeposition using a carbon nanocorn electrode as the support substrate that enables complete data collection for training artificial intelligence networks in one week. The inert support substrate ensures intrinsic activity measurement and operando characterization of the irreversible reconstruction of multinary alloy particles during the oxygen evolution reaction. Our approach works as a closed loop: catalyst synthesis–in situ measurement and characterization–database construction–ML analysis–catalyst design. Using artificial neural networks, the ML analysis revealed that the entropy values of multicomponent catalysts are proportional to their catalytic activity. The catalytic activities of high-entropy systems with different components varied little, and the overall catalytic activity was greater than that of the medium–low-entropy system. These findings will serve as a guideline for the design of catalysts.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c07442</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2023-09, Vol.15 (36), p.42532-42540</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a262t-821aa17c2d0f6a624d3ab655bfd1e0e285fdf2e8b5a94408cf0921587ed1b0463</cites><orcidid>0009-0000-5649-9275 ; 0000-0003-1343-0213 ; 0000-0002-8515-5495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c07442$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c07442$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Ding, Yan</creatorcontrib><creatorcontrib>Guan, Yanxue</creatorcontrib><creatorcontrib>Tang, Jilin</creatorcontrib><creatorcontrib>Jiang, Chunhuan</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Xu, Jianan</creatorcontrib><creatorcontrib>Zhao, Jia</creatorcontrib><creatorcontrib>Lu, Lehui</creatorcontrib><title>Combination of Rapid Intrinsic Activity Measurements and Machine Learning as a Screening Approach for Multicomponent Electrocatalysts</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Machine learning (ML) coupled with quantum chemistry calculations predicts catalyst properties with high accuracy; however, ML approaches in the design of multicomponent catalysts primarily rely on simulation data because obtaining sufficient experimental data in a short time is difficult. Herein, we developed a rapid screening strategy involving nanodroplet-mediated electrodeposition using a carbon nanocorn electrode as the support substrate that enables complete data collection for training artificial intelligence networks in one week. The inert support substrate ensures intrinsic activity measurement and operando characterization of the irreversible reconstruction of multinary alloy particles during the oxygen evolution reaction. Our approach works as a closed loop: catalyst synthesis–in situ measurement and characterization–database construction–ML analysis–catalyst design. Using artificial neural networks, the ML analysis revealed that the entropy values of multicomponent catalysts are proportional to their catalytic activity. The catalytic activities of high-entropy systems with different components varied little, and the overall catalytic activity was greater than that of the medium–low-entropy system. These findings will serve as a guideline for the design of catalysts.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrV495yhCa5L96PZYSv2AFsGPc5jNTjRlN1mTrNAf4P822uJN5jAzjzePN4-QS86mnAl-AypAZ6aZYrM8F0dkxOd5PqlEIY7_5jw_JWchbBkrM8GKEflauq42FqJxljpNn6A3DX2w0RsbjKILFc2niTu6QQiDxw5tDBRsQzeg3o1Fukbw1tg3Cgmnz8oj_q6Lvvcucah2nm6GNhrlut7ZJEBXLaronYII7S7EcE5ONLQBLw59TF5vVy_L-8n68e5huVhPQJQiJv8cgM-UaJguoRR5k0FdFkWtG44MRVXoRgus6gLSu6xSms0FL6oZNrxmeZmNydVeN1n7GDBE2ZmgsG3BohuCTArVPFUlEnW6pyrvQvCoZe9NB34nOZM_ect93vKQdzq43h8kXG7d4G365D_yN5dnhYg</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Liu, Chen</creator><creator>Ding, Yan</creator><creator>Guan, Yanxue</creator><creator>Tang, Jilin</creator><creator>Jiang, Chunhuan</creator><creator>Gao, Han</creator><creator>Xu, Jianan</creator><creator>Zhao, Jia</creator><creator>Lu, Lehui</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-5649-9275</orcidid><orcidid>https://orcid.org/0000-0003-1343-0213</orcidid><orcidid>https://orcid.org/0000-0002-8515-5495</orcidid></search><sort><creationdate>20230913</creationdate><title>Combination of Rapid Intrinsic Activity Measurements and Machine Learning as a Screening Approach for Multicomponent Electrocatalysts</title><author>Liu, Chen ; Ding, Yan ; Guan, Yanxue ; Tang, Jilin ; Jiang, Chunhuan ; Gao, Han ; Xu, Jianan ; Zhao, Jia ; Lu, Lehui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a262t-821aa17c2d0f6a624d3ab655bfd1e0e285fdf2e8b5a94408cf0921587ed1b0463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Ding, Yan</creatorcontrib><creatorcontrib>Guan, Yanxue</creatorcontrib><creatorcontrib>Tang, Jilin</creatorcontrib><creatorcontrib>Jiang, Chunhuan</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Xu, Jianan</creatorcontrib><creatorcontrib>Zhao, Jia</creatorcontrib><creatorcontrib>Lu, Lehui</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chen</au><au>Ding, Yan</au><au>Guan, Yanxue</au><au>Tang, Jilin</au><au>Jiang, Chunhuan</au><au>Gao, Han</au><au>Xu, Jianan</au><au>Zhao, Jia</au><au>Lu, Lehui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of Rapid Intrinsic Activity Measurements and Machine Learning as a Screening Approach for Multicomponent Electrocatalysts</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-09-13</date><risdate>2023</risdate><volume>15</volume><issue>36</issue><spage>42532</spage><epage>42540</epage><pages>42532-42540</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Machine learning (ML) coupled with quantum chemistry calculations predicts catalyst properties with high accuracy; however, ML approaches in the design of multicomponent catalysts primarily rely on simulation data because obtaining sufficient experimental data in a short time is difficult. Herein, we developed a rapid screening strategy involving nanodroplet-mediated electrodeposition using a carbon nanocorn electrode as the support substrate that enables complete data collection for training artificial intelligence networks in one week. The inert support substrate ensures intrinsic activity measurement and operando characterization of the irreversible reconstruction of multinary alloy particles during the oxygen evolution reaction. Our approach works as a closed loop: catalyst synthesis–in situ measurement and characterization–database construction–ML analysis–catalyst design. Using artificial neural networks, the ML analysis revealed that the entropy values of multicomponent catalysts are proportional to their catalytic activity. The catalytic activities of high-entropy systems with different components varied little, and the overall catalytic activity was greater than that of the medium–low-entropy system. These findings will serve as a guideline for the design of catalysts.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.3c07442</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0000-5649-9275</orcidid><orcidid>https://orcid.org/0000-0003-1343-0213</orcidid><orcidid>https://orcid.org/0000-0002-8515-5495</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-09, Vol.15 (36), p.42532-42540 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2858989882 |
source | American Chemical Society Journals |
subjects | Energy, Environmental, and Catalysis Applications |
title | Combination of Rapid Intrinsic Activity Measurements and Machine Learning as a Screening Approach for Multicomponent Electrocatalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20Rapid%20Intrinsic%20Activity%20Measurements%20and%20Machine%20Learning%20as%20a%20Screening%20Approach%20for%20Multicomponent%20Electrocatalysts&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Liu,%20Chen&rft.date=2023-09-13&rft.volume=15&rft.issue=36&rft.spage=42532&rft.epage=42540&rft.pages=42532-42540&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c07442&rft_dat=%3Cproquest_cross%3E2858989882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858989882&rft_id=info:pmid/&rfr_iscdi=true |