Combination of Rapid Intrinsic Activity Measurements and Machine Learning as a Screening Approach for Multicomponent Electrocatalysts

Machine learning (ML) coupled with quantum chemistry calculations predicts catalyst properties with high accuracy; however, ML approaches in the design of multicomponent catalysts primarily rely on simulation data because obtaining sufficient experimental data in a short time is difficult. Herein, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-09, Vol.15 (36), p.42532-42540
Hauptverfasser: Liu, Chen, Ding, Yan, Guan, Yanxue, Tang, Jilin, Jiang, Chunhuan, Gao, Han, Xu, Jianan, Zhao, Jia, Lu, Lehui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42540
container_issue 36
container_start_page 42532
container_title ACS applied materials & interfaces
container_volume 15
creator Liu, Chen
Ding, Yan
Guan, Yanxue
Tang, Jilin
Jiang, Chunhuan
Gao, Han
Xu, Jianan
Zhao, Jia
Lu, Lehui
description Machine learning (ML) coupled with quantum chemistry calculations predicts catalyst properties with high accuracy; however, ML approaches in the design of multicomponent catalysts primarily rely on simulation data because obtaining sufficient experimental data in a short time is difficult. Herein, we developed a rapid screening strategy involving nanodroplet-mediated electrodeposition using a carbon nanocorn electrode as the support substrate that enables complete data collection for training artificial intelligence networks in one week. The inert support substrate ensures intrinsic activity measurement and operando characterization of the irreversible reconstruction of multinary alloy particles during the oxygen evolution reaction. Our approach works as a closed loop: catalyst synthesis–in situ measurement and characterization–database construction–ML analysis–catalyst design. Using artificial neural networks, the ML analysis revealed that the entropy values of multicomponent catalysts are proportional to their catalytic activity. The catalytic activities of high-entropy systems with different components varied little, and the overall catalytic activity was greater than that of the medium–low-entropy system. These findings will serve as a guideline for the design of catalysts.
doi_str_mv 10.1021/acsami.3c07442
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2858989882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858989882</sourcerecordid><originalsourceid>FETCH-LOGICAL-a262t-821aa17c2d0f6a624d3ab655bfd1e0e285fdf2e8b5a94408cf0921587ed1b0463</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrV495yhCa5L96PZYSv2AFsGPc5jNTjRlN1mTrNAf4P822uJN5jAzjzePN4-QS86mnAl-AypAZ6aZYrM8F0dkxOd5PqlEIY7_5jw_JWchbBkrM8GKEflauq42FqJxljpNn6A3DX2w0RsbjKILFc2niTu6QQiDxw5tDBRsQzeg3o1Fukbw1tg3Cgmnz8oj_q6Lvvcucah2nm6GNhrlut7ZJEBXLaronYII7S7EcE5ONLQBLw59TF5vVy_L-8n68e5huVhPQJQiJv8cgM-UaJguoRR5k0FdFkWtG44MRVXoRgus6gLSu6xSms0FL6oZNrxmeZmNydVeN1n7GDBE2ZmgsG3BohuCTArVPFUlEnW6pyrvQvCoZe9NB34nOZM_ect93vKQdzq43h8kXG7d4G365D_yN5dnhYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858989882</pqid></control><display><type>article</type><title>Combination of Rapid Intrinsic Activity Measurements and Machine Learning as a Screening Approach for Multicomponent Electrocatalysts</title><source>American Chemical Society Journals</source><creator>Liu, Chen ; Ding, Yan ; Guan, Yanxue ; Tang, Jilin ; Jiang, Chunhuan ; Gao, Han ; Xu, Jianan ; Zhao, Jia ; Lu, Lehui</creator><creatorcontrib>Liu, Chen ; Ding, Yan ; Guan, Yanxue ; Tang, Jilin ; Jiang, Chunhuan ; Gao, Han ; Xu, Jianan ; Zhao, Jia ; Lu, Lehui</creatorcontrib><description>Machine learning (ML) coupled with quantum chemistry calculations predicts catalyst properties with high accuracy; however, ML approaches in the design of multicomponent catalysts primarily rely on simulation data because obtaining sufficient experimental data in a short time is difficult. Herein, we developed a rapid screening strategy involving nanodroplet-mediated electrodeposition using a carbon nanocorn electrode as the support substrate that enables complete data collection for training artificial intelligence networks in one week. The inert support substrate ensures intrinsic activity measurement and operando characterization of the irreversible reconstruction of multinary alloy particles during the oxygen evolution reaction. Our approach works as a closed loop: catalyst synthesis–in situ measurement and characterization–database construction–ML analysis–catalyst design. Using artificial neural networks, the ML analysis revealed that the entropy values of multicomponent catalysts are proportional to their catalytic activity. The catalytic activities of high-entropy systems with different components varied little, and the overall catalytic activity was greater than that of the medium–low-entropy system. These findings will serve as a guideline for the design of catalysts.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c07442</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-09, Vol.15 (36), p.42532-42540</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a262t-821aa17c2d0f6a624d3ab655bfd1e0e285fdf2e8b5a94408cf0921587ed1b0463</cites><orcidid>0009-0000-5649-9275 ; 0000-0003-1343-0213 ; 0000-0002-8515-5495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c07442$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c07442$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Ding, Yan</creatorcontrib><creatorcontrib>Guan, Yanxue</creatorcontrib><creatorcontrib>Tang, Jilin</creatorcontrib><creatorcontrib>Jiang, Chunhuan</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Xu, Jianan</creatorcontrib><creatorcontrib>Zhao, Jia</creatorcontrib><creatorcontrib>Lu, Lehui</creatorcontrib><title>Combination of Rapid Intrinsic Activity Measurements and Machine Learning as a Screening Approach for Multicomponent Electrocatalysts</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Machine learning (ML) coupled with quantum chemistry calculations predicts catalyst properties with high accuracy; however, ML approaches in the design of multicomponent catalysts primarily rely on simulation data because obtaining sufficient experimental data in a short time is difficult. Herein, we developed a rapid screening strategy involving nanodroplet-mediated electrodeposition using a carbon nanocorn electrode as the support substrate that enables complete data collection for training artificial intelligence networks in one week. The inert support substrate ensures intrinsic activity measurement and operando characterization of the irreversible reconstruction of multinary alloy particles during the oxygen evolution reaction. Our approach works as a closed loop: catalyst synthesis–in situ measurement and characterization–database construction–ML analysis–catalyst design. Using artificial neural networks, the ML analysis revealed that the entropy values of multicomponent catalysts are proportional to their catalytic activity. The catalytic activities of high-entropy systems with different components varied little, and the overall catalytic activity was greater than that of the medium–low-entropy system. These findings will serve as a guideline for the design of catalysts.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrV495yhCa5L96PZYSv2AFsGPc5jNTjRlN1mTrNAf4P822uJN5jAzjzePN4-QS86mnAl-AypAZ6aZYrM8F0dkxOd5PqlEIY7_5jw_JWchbBkrM8GKEflauq42FqJxljpNn6A3DX2w0RsbjKILFc2niTu6QQiDxw5tDBRsQzeg3o1Fukbw1tg3Cgmnz8oj_q6Lvvcucah2nm6GNhrlut7ZJEBXLaronYII7S7EcE5ONLQBLw59TF5vVy_L-8n68e5huVhPQJQiJv8cgM-UaJguoRR5k0FdFkWtG44MRVXoRgus6gLSu6xSms0FL6oZNrxmeZmNydVeN1n7GDBE2ZmgsG3BohuCTArVPFUlEnW6pyrvQvCoZe9NB34nOZM_ect93vKQdzq43h8kXG7d4G365D_yN5dnhYg</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Liu, Chen</creator><creator>Ding, Yan</creator><creator>Guan, Yanxue</creator><creator>Tang, Jilin</creator><creator>Jiang, Chunhuan</creator><creator>Gao, Han</creator><creator>Xu, Jianan</creator><creator>Zhao, Jia</creator><creator>Lu, Lehui</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-5649-9275</orcidid><orcidid>https://orcid.org/0000-0003-1343-0213</orcidid><orcidid>https://orcid.org/0000-0002-8515-5495</orcidid></search><sort><creationdate>20230913</creationdate><title>Combination of Rapid Intrinsic Activity Measurements and Machine Learning as a Screening Approach for Multicomponent Electrocatalysts</title><author>Liu, Chen ; Ding, Yan ; Guan, Yanxue ; Tang, Jilin ; Jiang, Chunhuan ; Gao, Han ; Xu, Jianan ; Zhao, Jia ; Lu, Lehui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a262t-821aa17c2d0f6a624d3ab655bfd1e0e285fdf2e8b5a94408cf0921587ed1b0463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Ding, Yan</creatorcontrib><creatorcontrib>Guan, Yanxue</creatorcontrib><creatorcontrib>Tang, Jilin</creatorcontrib><creatorcontrib>Jiang, Chunhuan</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Xu, Jianan</creatorcontrib><creatorcontrib>Zhao, Jia</creatorcontrib><creatorcontrib>Lu, Lehui</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chen</au><au>Ding, Yan</au><au>Guan, Yanxue</au><au>Tang, Jilin</au><au>Jiang, Chunhuan</au><au>Gao, Han</au><au>Xu, Jianan</au><au>Zhao, Jia</au><au>Lu, Lehui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of Rapid Intrinsic Activity Measurements and Machine Learning as a Screening Approach for Multicomponent Electrocatalysts</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-09-13</date><risdate>2023</risdate><volume>15</volume><issue>36</issue><spage>42532</spage><epage>42540</epage><pages>42532-42540</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Machine learning (ML) coupled with quantum chemistry calculations predicts catalyst properties with high accuracy; however, ML approaches in the design of multicomponent catalysts primarily rely on simulation data because obtaining sufficient experimental data in a short time is difficult. Herein, we developed a rapid screening strategy involving nanodroplet-mediated electrodeposition using a carbon nanocorn electrode as the support substrate that enables complete data collection for training artificial intelligence networks in one week. The inert support substrate ensures intrinsic activity measurement and operando characterization of the irreversible reconstruction of multinary alloy particles during the oxygen evolution reaction. Our approach works as a closed loop: catalyst synthesis–in situ measurement and characterization–database construction–ML analysis–catalyst design. Using artificial neural networks, the ML analysis revealed that the entropy values of multicomponent catalysts are proportional to their catalytic activity. The catalytic activities of high-entropy systems with different components varied little, and the overall catalytic activity was greater than that of the medium–low-entropy system. These findings will serve as a guideline for the design of catalysts.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.3c07442</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0000-5649-9275</orcidid><orcidid>https://orcid.org/0000-0003-1343-0213</orcidid><orcidid>https://orcid.org/0000-0002-8515-5495</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-09, Vol.15 (36), p.42532-42540
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2858989882
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title Combination of Rapid Intrinsic Activity Measurements and Machine Learning as a Screening Approach for Multicomponent Electrocatalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20Rapid%20Intrinsic%20Activity%20Measurements%20and%20Machine%20Learning%20as%20a%20Screening%20Approach%20for%20Multicomponent%20Electrocatalysts&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Liu,%20Chen&rft.date=2023-09-13&rft.volume=15&rft.issue=36&rft.spage=42532&rft.epage=42540&rft.pages=42532-42540&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c07442&rft_dat=%3Cproquest_cross%3E2858989882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858989882&rft_id=info:pmid/&rfr_iscdi=true