Robust Cellulose Nanocrystal‐Based Self‐Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting
Osmotic energy from the salinity gradients represents a promising energy resource with stable and sustainable characteristics. Nanofluidic membranes can be considered as powerful alternatives to the traditional low‐performance ion exchange membrane to achieve high‐efficiency osmotic energy harvestin...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-12, Vol.19 (50), p.e2304603-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 50 |
container_start_page | e2304603 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Zhang, Xin Li, Minmin Zhang, Fusheng Li, Qiongya Xiao, Jie Lin, Qiwen Qing, Guangyan |
description | Osmotic energy from the salinity gradients represents a promising energy resource with stable and sustainable characteristics. Nanofluidic membranes can be considered as powerful alternatives to the traditional low‐performance ion exchange membrane to achieve high‐efficiency osmotic energy harvesting. However, the development of a highly efficient and easily scalable core membrane component from low‐cost raw materials remains challenging. Here, a composite membrane based on the self‐assembly of cellulose nanocrystals (CNCs) with polyvinyl alcohol (PVA) and graphene oxide (GO) nanoflakes as additives is developed to provide a solution. The introduction of soft PVA polymer significantly improves the mechanical strength and water stability of the composite membrane by forming a nacre‐like structure. Benefiting from the abundant negative charges of CNC nanorods and GO nanoflakes and the generated network nanochannels, the composite membrane demonstrates a good cation‐selective transport capacity, thus contributing to an optimal osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and an exemplary stability throughout 25 consecutive days of operation. This work provides an option for the development of nanofluidic membranes that can be easily produced on a large scale from well‐resourced and sustainable biomass materials for high‐efficiency osmotic energy conversion.
A cellulose nanocrystal‐dominated self‐assembled composite membrane doped with polyvinyl alcohol and Graphene nanoflakes is fabricated. The resulting composite membrane with excellent mechanical strength and chemical stability demonstrates an osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and exemplary long‐term stability. |
doi_str_mv | 10.1002/smll.202304603 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2858406400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900812461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-840e2df3a70b6db9c560cd7640600d4339bae4fffddb6ae6c044927d18822fde3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EomXhyhFZ4sJll7GddZLjspQWacsiCufIscfdVE4c7KQltz5Cb7wfT4KrLYvEhZPt8ed_xv9PyEsGCwbA38bWuQUHLiCTIB6RYyaZmMuCl48PewZH5FmMVwCC8Sx_So5ELsWScTgmP7_4eowDXaNzo_MR6SfVeR2mOCj36_bunYpo6AU6mw6rGLGtXSqsfdv72AxIz1MlqA4jfe_7dHPTDDv62bvpuukmR1dO-513VHWGngbV77BDuv3RGKTWB7qNrR8aTU86DJcTPVPhGuPQdJfPyROrXMQXD-uMfPtw8nV9Nt9sTz-uV5u5FrkQ8yID5MYKlUMtTV3qpQRtcpmBBDCZEGWtMLPWGlNLhVJDlpU8N6woOLcGxYy82ev2wX8fU--qbaJOZqQv-TFWvFimHkkPEvr6H_TKj6FL01W8BCiSt8nvGVnsKR18jAFt1YemVWGqGFT3kVX3kVWHyNKDVw-yY92iOeB_MkpAuQduGofTf-Sqi_PN5q_4b0gop0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900812461</pqid></control><display><type>article</type><title>Robust Cellulose Nanocrystal‐Based Self‐Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Xin ; Li, Minmin ; Zhang, Fusheng ; Li, Qiongya ; Xiao, Jie ; Lin, Qiwen ; Qing, Guangyan</creator><creatorcontrib>Zhang, Xin ; Li, Minmin ; Zhang, Fusheng ; Li, Qiongya ; Xiao, Jie ; Lin, Qiwen ; Qing, Guangyan</creatorcontrib><description>Osmotic energy from the salinity gradients represents a promising energy resource with stable and sustainable characteristics. Nanofluidic membranes can be considered as powerful alternatives to the traditional low‐performance ion exchange membrane to achieve high‐efficiency osmotic energy harvesting. However, the development of a highly efficient and easily scalable core membrane component from low‐cost raw materials remains challenging. Here, a composite membrane based on the self‐assembly of cellulose nanocrystals (CNCs) with polyvinyl alcohol (PVA) and graphene oxide (GO) nanoflakes as additives is developed to provide a solution. The introduction of soft PVA polymer significantly improves the mechanical strength and water stability of the composite membrane by forming a nacre‐like structure. Benefiting from the abundant negative charges of CNC nanorods and GO nanoflakes and the generated network nanochannels, the composite membrane demonstrates a good cation‐selective transport capacity, thus contributing to an optimal osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and an exemplary stability throughout 25 consecutive days of operation. This work provides an option for the development of nanofluidic membranes that can be easily produced on a large scale from well‐resourced and sustainable biomass materials for high‐efficiency osmotic energy conversion.
A cellulose nanocrystal‐dominated self‐assembled composite membrane doped with polyvinyl alcohol and Graphene nanoflakes is fabricated. The resulting composite membrane with excellent mechanical strength and chemical stability demonstrates an osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and exemplary long‐term stability.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202304603</identifier><identifier>PMID: 37635120</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Additives ; Cellulose ; cellulose nanocrystals ; composite membranes ; Energy ; Energy conversion efficiency ; Energy harvesting ; Energy sources ; Fluidics ; Graphene ; Ion exchange ; Membranes ; Nanochannels ; Nanocrystals ; nanofluidics ; Nanofluids ; Nanorods ; Nanotechnology ; osmotic energy ; Polyvinyl alcohol ; Raw materials ; Salinity ; Self-assembly ; Water stability</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-12, Vol.19 (50), p.e2304603-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-840e2df3a70b6db9c560cd7640600d4339bae4fffddb6ae6c044927d18822fde3</citedby><cites>FETCH-LOGICAL-c3733-840e2df3a70b6db9c560cd7640600d4339bae4fffddb6ae6c044927d18822fde3</cites><orcidid>0000-0003-0596-5445 ; 0000-0002-4888-9318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202304603$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202304603$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37635120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Li, Minmin</creatorcontrib><creatorcontrib>Zhang, Fusheng</creatorcontrib><creatorcontrib>Li, Qiongya</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Lin, Qiwen</creatorcontrib><creatorcontrib>Qing, Guangyan</creatorcontrib><title>Robust Cellulose Nanocrystal‐Based Self‐Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Osmotic energy from the salinity gradients represents a promising energy resource with stable and sustainable characteristics. Nanofluidic membranes can be considered as powerful alternatives to the traditional low‐performance ion exchange membrane to achieve high‐efficiency osmotic energy harvesting. However, the development of a highly efficient and easily scalable core membrane component from low‐cost raw materials remains challenging. Here, a composite membrane based on the self‐assembly of cellulose nanocrystals (CNCs) with polyvinyl alcohol (PVA) and graphene oxide (GO) nanoflakes as additives is developed to provide a solution. The introduction of soft PVA polymer significantly improves the mechanical strength and water stability of the composite membrane by forming a nacre‐like structure. Benefiting from the abundant negative charges of CNC nanorods and GO nanoflakes and the generated network nanochannels, the composite membrane demonstrates a good cation‐selective transport capacity, thus contributing to an optimal osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and an exemplary stability throughout 25 consecutive days of operation. This work provides an option for the development of nanofluidic membranes that can be easily produced on a large scale from well‐resourced and sustainable biomass materials for high‐efficiency osmotic energy conversion.
A cellulose nanocrystal‐dominated self‐assembled composite membrane doped with polyvinyl alcohol and Graphene nanoflakes is fabricated. The resulting composite membrane with excellent mechanical strength and chemical stability demonstrates an osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and exemplary long‐term stability.</description><subject>Additives</subject><subject>Cellulose</subject><subject>cellulose nanocrystals</subject><subject>composite membranes</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Energy sources</subject><subject>Fluidics</subject><subject>Graphene</subject><subject>Ion exchange</subject><subject>Membranes</subject><subject>Nanochannels</subject><subject>Nanocrystals</subject><subject>nanofluidics</subject><subject>Nanofluids</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>osmotic energy</subject><subject>Polyvinyl alcohol</subject><subject>Raw materials</subject><subject>Salinity</subject><subject>Self-assembly</subject><subject>Water stability</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EomXhyhFZ4sJll7GddZLjspQWacsiCufIscfdVE4c7KQltz5Cb7wfT4KrLYvEhZPt8ed_xv9PyEsGCwbA38bWuQUHLiCTIB6RYyaZmMuCl48PewZH5FmMVwCC8Sx_So5ELsWScTgmP7_4eowDXaNzo_MR6SfVeR2mOCj36_bunYpo6AU6mw6rGLGtXSqsfdv72AxIz1MlqA4jfe_7dHPTDDv62bvpuukmR1dO-513VHWGngbV77BDuv3RGKTWB7qNrR8aTU86DJcTPVPhGuPQdJfPyROrXMQXD-uMfPtw8nV9Nt9sTz-uV5u5FrkQ8yID5MYKlUMtTV3qpQRtcpmBBDCZEGWtMLPWGlNLhVJDlpU8N6woOLcGxYy82ev2wX8fU--qbaJOZqQv-TFWvFimHkkPEvr6H_TKj6FL01W8BCiSt8nvGVnsKR18jAFt1YemVWGqGFT3kVX3kVWHyNKDVw-yY92iOeB_MkpAuQduGofTf-Sqi_PN5q_4b0gop0E</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Zhang, Xin</creator><creator>Li, Minmin</creator><creator>Zhang, Fusheng</creator><creator>Li, Qiongya</creator><creator>Xiao, Jie</creator><creator>Lin, Qiwen</creator><creator>Qing, Guangyan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0596-5445</orcidid><orcidid>https://orcid.org/0000-0002-4888-9318</orcidid></search><sort><creationdate>202312</creationdate><title>Robust Cellulose Nanocrystal‐Based Self‐Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting</title><author>Zhang, Xin ; Li, Minmin ; Zhang, Fusheng ; Li, Qiongya ; Xiao, Jie ; Lin, Qiwen ; Qing, Guangyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-840e2df3a70b6db9c560cd7640600d4339bae4fffddb6ae6c044927d18822fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Cellulose</topic><topic>cellulose nanocrystals</topic><topic>composite membranes</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Energy sources</topic><topic>Fluidics</topic><topic>Graphene</topic><topic>Ion exchange</topic><topic>Membranes</topic><topic>Nanochannels</topic><topic>Nanocrystals</topic><topic>nanofluidics</topic><topic>Nanofluids</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>osmotic energy</topic><topic>Polyvinyl alcohol</topic><topic>Raw materials</topic><topic>Salinity</topic><topic>Self-assembly</topic><topic>Water stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Li, Minmin</creatorcontrib><creatorcontrib>Zhang, Fusheng</creatorcontrib><creatorcontrib>Li, Qiongya</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Lin, Qiwen</creatorcontrib><creatorcontrib>Qing, Guangyan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xin</au><au>Li, Minmin</au><au>Zhang, Fusheng</au><au>Li, Qiongya</au><au>Xiao, Jie</au><au>Lin, Qiwen</au><au>Qing, Guangyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Cellulose Nanocrystal‐Based Self‐Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-12</date><risdate>2023</risdate><volume>19</volume><issue>50</issue><spage>e2304603</spage><epage>n/a</epage><pages>e2304603-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Osmotic energy from the salinity gradients represents a promising energy resource with stable and sustainable characteristics. Nanofluidic membranes can be considered as powerful alternatives to the traditional low‐performance ion exchange membrane to achieve high‐efficiency osmotic energy harvesting. However, the development of a highly efficient and easily scalable core membrane component from low‐cost raw materials remains challenging. Here, a composite membrane based on the self‐assembly of cellulose nanocrystals (CNCs) with polyvinyl alcohol (PVA) and graphene oxide (GO) nanoflakes as additives is developed to provide a solution. The introduction of soft PVA polymer significantly improves the mechanical strength and water stability of the composite membrane by forming a nacre‐like structure. Benefiting from the abundant negative charges of CNC nanorods and GO nanoflakes and the generated network nanochannels, the composite membrane demonstrates a good cation‐selective transport capacity, thus contributing to an optimal osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and an exemplary stability throughout 25 consecutive days of operation. This work provides an option for the development of nanofluidic membranes that can be easily produced on a large scale from well‐resourced and sustainable biomass materials for high‐efficiency osmotic energy conversion.
A cellulose nanocrystal‐dominated self‐assembled composite membrane doped with polyvinyl alcohol and Graphene nanoflakes is fabricated. The resulting composite membrane with excellent mechanical strength and chemical stability demonstrates an osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and exemplary long‐term stability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37635120</pmid><doi>10.1002/smll.202304603</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0596-5445</orcidid><orcidid>https://orcid.org/0000-0002-4888-9318</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-12, Vol.19 (50), p.e2304603-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2858406400 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Additives Cellulose cellulose nanocrystals composite membranes Energy Energy conversion efficiency Energy harvesting Energy sources Fluidics Graphene Ion exchange Membranes Nanochannels Nanocrystals nanofluidics Nanofluids Nanorods Nanotechnology osmotic energy Polyvinyl alcohol Raw materials Salinity Self-assembly Water stability |
title | Robust Cellulose Nanocrystal‐Based Self‐Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Cellulose%20Nanocrystal%E2%80%90Based%20Self%E2%80%90Assembled%20Composite%20Membranes%20Doped%20with%20Polyvinyl%20Alcohol%20and%20Graphene%20Oxide%20for%20Osmotic%20Energy%20Harvesting&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Xin&rft.date=2023-12&rft.volume=19&rft.issue=50&rft.spage=e2304603&rft.epage=n/a&rft.pages=e2304603-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202304603&rft_dat=%3Cproquest_cross%3E2900812461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900812461&rft_id=info:pmid/37635120&rfr_iscdi=true |