Robust Cellulose Nanocrystal‐Based Self‐Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting

Osmotic energy from the salinity gradients represents a promising energy resource with stable and sustainable characteristics. Nanofluidic membranes can be considered as powerful alternatives to the traditional low‐performance ion exchange membrane to achieve high‐efficiency osmotic energy harvestin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-12, Vol.19 (50), p.e2304603-n/a
Hauptverfasser: Zhang, Xin, Li, Minmin, Zhang, Fusheng, Li, Qiongya, Xiao, Jie, Lin, Qiwen, Qing, Guangyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 50
container_start_page e2304603
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Zhang, Xin
Li, Minmin
Zhang, Fusheng
Li, Qiongya
Xiao, Jie
Lin, Qiwen
Qing, Guangyan
description Osmotic energy from the salinity gradients represents a promising energy resource with stable and sustainable characteristics. Nanofluidic membranes can be considered as powerful alternatives to the traditional low‐performance ion exchange membrane to achieve high‐efficiency osmotic energy harvesting. However, the development of a highly efficient and easily scalable core membrane component from low‐cost raw materials remains challenging. Here, a composite membrane based on the self‐assembly of cellulose nanocrystals (CNCs) with polyvinyl alcohol (PVA) and graphene oxide (GO) nanoflakes as additives is developed to provide a solution. The introduction of soft PVA polymer significantly improves the mechanical strength and water stability of the composite membrane by forming a nacre‐like structure. Benefiting from the abundant negative charges of CNC nanorods and GO nanoflakes and the generated network nanochannels, the composite membrane demonstrates a good cation‐selective transport capacity, thus contributing to an optimal osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and an exemplary stability throughout 25 consecutive days of operation. This work provides an option for the development of nanofluidic membranes that can be easily produced on a large scale from well‐resourced and sustainable biomass materials for high‐efficiency osmotic energy conversion. A cellulose nanocrystal‐dominated self‐assembled composite membrane doped with polyvinyl alcohol and Graphene nanoflakes is fabricated. The resulting composite membrane with excellent mechanical strength and chemical stability demonstrates an osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and exemplary long‐term stability.
doi_str_mv 10.1002/smll.202304603
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2858406400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900812461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-840e2df3a70b6db9c560cd7640600d4339bae4fffddb6ae6c044927d18822fde3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EomXhyhFZ4sJll7GddZLjspQWacsiCufIscfdVE4c7KQltz5Cb7wfT4KrLYvEhZPt8ed_xv9PyEsGCwbA38bWuQUHLiCTIB6RYyaZmMuCl48PewZH5FmMVwCC8Sx_So5ELsWScTgmP7_4eowDXaNzo_MR6SfVeR2mOCj36_bunYpo6AU6mw6rGLGtXSqsfdv72AxIz1MlqA4jfe_7dHPTDDv62bvpuukmR1dO-513VHWGngbV77BDuv3RGKTWB7qNrR8aTU86DJcTPVPhGuPQdJfPyROrXMQXD-uMfPtw8nV9Nt9sTz-uV5u5FrkQ8yID5MYKlUMtTV3qpQRtcpmBBDCZEGWtMLPWGlNLhVJDlpU8N6woOLcGxYy82ev2wX8fU--qbaJOZqQv-TFWvFimHkkPEvr6H_TKj6FL01W8BCiSt8nvGVnsKR18jAFt1YemVWGqGFT3kVX3kVWHyNKDVw-yY92iOeB_MkpAuQduGofTf-Sqi_PN5q_4b0gop0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900812461</pqid></control><display><type>article</type><title>Robust Cellulose Nanocrystal‐Based Self‐Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Xin ; Li, Minmin ; Zhang, Fusheng ; Li, Qiongya ; Xiao, Jie ; Lin, Qiwen ; Qing, Guangyan</creator><creatorcontrib>Zhang, Xin ; Li, Minmin ; Zhang, Fusheng ; Li, Qiongya ; Xiao, Jie ; Lin, Qiwen ; Qing, Guangyan</creatorcontrib><description>Osmotic energy from the salinity gradients represents a promising energy resource with stable and sustainable characteristics. Nanofluidic membranes can be considered as powerful alternatives to the traditional low‐performance ion exchange membrane to achieve high‐efficiency osmotic energy harvesting. However, the development of a highly efficient and easily scalable core membrane component from low‐cost raw materials remains challenging. Here, a composite membrane based on the self‐assembly of cellulose nanocrystals (CNCs) with polyvinyl alcohol (PVA) and graphene oxide (GO) nanoflakes as additives is developed to provide a solution. The introduction of soft PVA polymer significantly improves the mechanical strength and water stability of the composite membrane by forming a nacre‐like structure. Benefiting from the abundant negative charges of CNC nanorods and GO nanoflakes and the generated network nanochannels, the composite membrane demonstrates a good cation‐selective transport capacity, thus contributing to an optimal osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and an exemplary stability throughout 25 consecutive days of operation. This work provides an option for the development of nanofluidic membranes that can be easily produced on a large scale from well‐resourced and sustainable biomass materials for high‐efficiency osmotic energy conversion. A cellulose nanocrystal‐dominated self‐assembled composite membrane doped with polyvinyl alcohol and Graphene nanoflakes is fabricated. The resulting composite membrane with excellent mechanical strength and chemical stability demonstrates an osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and exemplary long‐term stability.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202304603</identifier><identifier>PMID: 37635120</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Additives ; Cellulose ; cellulose nanocrystals ; composite membranes ; Energy ; Energy conversion efficiency ; Energy harvesting ; Energy sources ; Fluidics ; Graphene ; Ion exchange ; Membranes ; Nanochannels ; Nanocrystals ; nanofluidics ; Nanofluids ; Nanorods ; Nanotechnology ; osmotic energy ; Polyvinyl alcohol ; Raw materials ; Salinity ; Self-assembly ; Water stability</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-12, Vol.19 (50), p.e2304603-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-840e2df3a70b6db9c560cd7640600d4339bae4fffddb6ae6c044927d18822fde3</citedby><cites>FETCH-LOGICAL-c3733-840e2df3a70b6db9c560cd7640600d4339bae4fffddb6ae6c044927d18822fde3</cites><orcidid>0000-0003-0596-5445 ; 0000-0002-4888-9318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202304603$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202304603$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37635120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Li, Minmin</creatorcontrib><creatorcontrib>Zhang, Fusheng</creatorcontrib><creatorcontrib>Li, Qiongya</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Lin, Qiwen</creatorcontrib><creatorcontrib>Qing, Guangyan</creatorcontrib><title>Robust Cellulose Nanocrystal‐Based Self‐Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Osmotic energy from the salinity gradients represents a promising energy resource with stable and sustainable characteristics. Nanofluidic membranes can be considered as powerful alternatives to the traditional low‐performance ion exchange membrane to achieve high‐efficiency osmotic energy harvesting. However, the development of a highly efficient and easily scalable core membrane component from low‐cost raw materials remains challenging. Here, a composite membrane based on the self‐assembly of cellulose nanocrystals (CNCs) with polyvinyl alcohol (PVA) and graphene oxide (GO) nanoflakes as additives is developed to provide a solution. The introduction of soft PVA polymer significantly improves the mechanical strength and water stability of the composite membrane by forming a nacre‐like structure. Benefiting from the abundant negative charges of CNC nanorods and GO nanoflakes and the generated network nanochannels, the composite membrane demonstrates a good cation‐selective transport capacity, thus contributing to an optimal osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and an exemplary stability throughout 25 consecutive days of operation. This work provides an option for the development of nanofluidic membranes that can be easily produced on a large scale from well‐resourced and sustainable biomass materials for high‐efficiency osmotic energy conversion. A cellulose nanocrystal‐dominated self‐assembled composite membrane doped with polyvinyl alcohol and Graphene nanoflakes is fabricated. The resulting composite membrane with excellent mechanical strength and chemical stability demonstrates an osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and exemplary long‐term stability.</description><subject>Additives</subject><subject>Cellulose</subject><subject>cellulose nanocrystals</subject><subject>composite membranes</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Energy sources</subject><subject>Fluidics</subject><subject>Graphene</subject><subject>Ion exchange</subject><subject>Membranes</subject><subject>Nanochannels</subject><subject>Nanocrystals</subject><subject>nanofluidics</subject><subject>Nanofluids</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>osmotic energy</subject><subject>Polyvinyl alcohol</subject><subject>Raw materials</subject><subject>Salinity</subject><subject>Self-assembly</subject><subject>Water stability</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EomXhyhFZ4sJll7GddZLjspQWacsiCufIscfdVE4c7KQltz5Cb7wfT4KrLYvEhZPt8ed_xv9PyEsGCwbA38bWuQUHLiCTIB6RYyaZmMuCl48PewZH5FmMVwCC8Sx_So5ELsWScTgmP7_4eowDXaNzo_MR6SfVeR2mOCj36_bunYpo6AU6mw6rGLGtXSqsfdv72AxIz1MlqA4jfe_7dHPTDDv62bvpuukmR1dO-513VHWGngbV77BDuv3RGKTWB7qNrR8aTU86DJcTPVPhGuPQdJfPyROrXMQXD-uMfPtw8nV9Nt9sTz-uV5u5FrkQ8yID5MYKlUMtTV3qpQRtcpmBBDCZEGWtMLPWGlNLhVJDlpU8N6woOLcGxYy82ev2wX8fU--qbaJOZqQv-TFWvFimHkkPEvr6H_TKj6FL01W8BCiSt8nvGVnsKR18jAFt1YemVWGqGFT3kVX3kVWHyNKDVw-yY92iOeB_MkpAuQduGofTf-Sqi_PN5q_4b0gop0E</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Zhang, Xin</creator><creator>Li, Minmin</creator><creator>Zhang, Fusheng</creator><creator>Li, Qiongya</creator><creator>Xiao, Jie</creator><creator>Lin, Qiwen</creator><creator>Qing, Guangyan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0596-5445</orcidid><orcidid>https://orcid.org/0000-0002-4888-9318</orcidid></search><sort><creationdate>202312</creationdate><title>Robust Cellulose Nanocrystal‐Based Self‐Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting</title><author>Zhang, Xin ; Li, Minmin ; Zhang, Fusheng ; Li, Qiongya ; Xiao, Jie ; Lin, Qiwen ; Qing, Guangyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-840e2df3a70b6db9c560cd7640600d4339bae4fffddb6ae6c044927d18822fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Cellulose</topic><topic>cellulose nanocrystals</topic><topic>composite membranes</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Energy sources</topic><topic>Fluidics</topic><topic>Graphene</topic><topic>Ion exchange</topic><topic>Membranes</topic><topic>Nanochannels</topic><topic>Nanocrystals</topic><topic>nanofluidics</topic><topic>Nanofluids</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>osmotic energy</topic><topic>Polyvinyl alcohol</topic><topic>Raw materials</topic><topic>Salinity</topic><topic>Self-assembly</topic><topic>Water stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Li, Minmin</creatorcontrib><creatorcontrib>Zhang, Fusheng</creatorcontrib><creatorcontrib>Li, Qiongya</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Lin, Qiwen</creatorcontrib><creatorcontrib>Qing, Guangyan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xin</au><au>Li, Minmin</au><au>Zhang, Fusheng</au><au>Li, Qiongya</au><au>Xiao, Jie</au><au>Lin, Qiwen</au><au>Qing, Guangyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Cellulose Nanocrystal‐Based Self‐Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-12</date><risdate>2023</risdate><volume>19</volume><issue>50</issue><spage>e2304603</spage><epage>n/a</epage><pages>e2304603-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Osmotic energy from the salinity gradients represents a promising energy resource with stable and sustainable characteristics. Nanofluidic membranes can be considered as powerful alternatives to the traditional low‐performance ion exchange membrane to achieve high‐efficiency osmotic energy harvesting. However, the development of a highly efficient and easily scalable core membrane component from low‐cost raw materials remains challenging. Here, a composite membrane based on the self‐assembly of cellulose nanocrystals (CNCs) with polyvinyl alcohol (PVA) and graphene oxide (GO) nanoflakes as additives is developed to provide a solution. The introduction of soft PVA polymer significantly improves the mechanical strength and water stability of the composite membrane by forming a nacre‐like structure. Benefiting from the abundant negative charges of CNC nanorods and GO nanoflakes and the generated network nanochannels, the composite membrane demonstrates a good cation‐selective transport capacity, thus contributing to an optimal osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and an exemplary stability throughout 25 consecutive days of operation. This work provides an option for the development of nanofluidic membranes that can be easily produced on a large scale from well‐resourced and sustainable biomass materials for high‐efficiency osmotic energy conversion. A cellulose nanocrystal‐dominated self‐assembled composite membrane doped with polyvinyl alcohol and Graphene nanoflakes is fabricated. The resulting composite membrane with excellent mechanical strength and chemical stability demonstrates an osmotic energy conversion of 6.5 W m−2 under a 100‐fold salinity gradient and exemplary long‐term stability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37635120</pmid><doi>10.1002/smll.202304603</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0596-5445</orcidid><orcidid>https://orcid.org/0000-0002-4888-9318</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-12, Vol.19 (50), p.e2304603-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2858406400
source Wiley Online Library Journals Frontfile Complete
subjects Additives
Cellulose
cellulose nanocrystals
composite membranes
Energy
Energy conversion efficiency
Energy harvesting
Energy sources
Fluidics
Graphene
Ion exchange
Membranes
Nanochannels
Nanocrystals
nanofluidics
Nanofluids
Nanorods
Nanotechnology
osmotic energy
Polyvinyl alcohol
Raw materials
Salinity
Self-assembly
Water stability
title Robust Cellulose Nanocrystal‐Based Self‐Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Cellulose%20Nanocrystal%E2%80%90Based%20Self%E2%80%90Assembled%20Composite%20Membranes%20Doped%20with%20Polyvinyl%20Alcohol%20and%20Graphene%20Oxide%20for%20Osmotic%20Energy%20Harvesting&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Xin&rft.date=2023-12&rft.volume=19&rft.issue=50&rft.spage=e2304603&rft.epage=n/a&rft.pages=e2304603-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202304603&rft_dat=%3Cproquest_cross%3E2900812461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900812461&rft_id=info:pmid/37635120&rfr_iscdi=true