Topology-sensitive weighting model for myocardial segmentation

Accurate myocardial segmentation is crucial for the diagnosis of various heart diseases. However, segmentation results often suffer from topology structural errors, such as broken connections and holes, especially in cases of poor image quality. These errors are unacceptable in clinical diagnosis. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2023-10, Vol.165, p.107286-107286, Article 107286
Hauptverfasser: Sun, Song, Wang, Yonghuai, Yang, Jinzhu, Feng, Yong, Tang, Lingzhi, Liu, Shuo, Ning, Hongxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107286
container_issue
container_start_page 107286
container_title Computers in biology and medicine
container_volume 165
creator Sun, Song
Wang, Yonghuai
Yang, Jinzhu
Feng, Yong
Tang, Lingzhi
Liu, Shuo
Ning, Hongxia
description Accurate myocardial segmentation is crucial for the diagnosis of various heart diseases. However, segmentation results often suffer from topology structural errors, such as broken connections and holes, especially in cases of poor image quality. These errors are unacceptable in clinical diagnosis. We proposed a Topology-Sensitive Weight (TSW) model to keep both pixel-wise accuracy and topological correctness. Specifically, the Position Weighting Update (PWU) strategy with the Boundary-Sensitive Topology (BST) module can guide the model to focus on positions where topological features are sensitive to pixel values. The Myocardial Integrity Topology (MIT) module can serve as a guide for maintaining myocardial integrity. We evaluate the TSW model on the CAMUS dataset and a private echocardiography myocardial segmentation dataset. The qualitative and quantitative experimental results show that the TSW model significantly enhances topological accuracy while maintaining pixel-wise precision. •The TSW model can maintain both pixel-wise accuracy and topological correctness.•The PWU strategy and BST module can focus on pixels prone to change.•The MIT module can effectively keep myocardial integrity.•The TSW model is validated on two datasets. The TWS can improve topology correctness.
doi_str_mv 10.1016/j.compbiomed.2023.107286
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2857854331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482523007515</els_id><sourcerecordid>2857854331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-76bbaa2e3e8a8b8f84101628cb01cb740daa2a9910b0e354dac90be0b899f1e13</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-h4IXL10nTdqmF0EX_8GCl_UcknRaU9pmTbor--1tqSB48TQw83uPN4-QiMKKAs1um5Vx3U5b12G5SiBh4zpPRHZCFlTkRQwp46dkAUAh5iJJz8lFCA0AcGCwIHdbt3Otq49xwD7YwR4w-kJbfwy2r6POldhGlfNRd3RG-dKqNgpYd9gParCuvyRnlWoDXv3MJXl_etyuX-LN2_Pr-n4TG5bzIc4zrZVKkKFQQotK8Cl7IowGanTOoRyvqigoaECW8lKZAjSCFkVRUaRsSW5m3513n3sMg-xsMNi2qke3DzIRaS5SztiEXv9BG7f3_ZhupLKcFoKlMFJipox3IXis5M7bTvmjpCCncLKRv8XKqVg5FztKH2Ypjg8fLHoZjMXeYGk9mkGWzv5v8g27KIbH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867198350</pqid></control><display><type>article</type><title>Topology-sensitive weighting model for myocardial segmentation</title><source>Elsevier ScienceDirect Journals</source><creator>Sun, Song ; Wang, Yonghuai ; Yang, Jinzhu ; Feng, Yong ; Tang, Lingzhi ; Liu, Shuo ; Ning, Hongxia</creator><creatorcontrib>Sun, Song ; Wang, Yonghuai ; Yang, Jinzhu ; Feng, Yong ; Tang, Lingzhi ; Liu, Shuo ; Ning, Hongxia</creatorcontrib><description>Accurate myocardial segmentation is crucial for the diagnosis of various heart diseases. However, segmentation results often suffer from topology structural errors, such as broken connections and holes, especially in cases of poor image quality. These errors are unacceptable in clinical diagnosis. We proposed a Topology-Sensitive Weight (TSW) model to keep both pixel-wise accuracy and topological correctness. Specifically, the Position Weighting Update (PWU) strategy with the Boundary-Sensitive Topology (BST) module can guide the model to focus on positions where topological features are sensitive to pixel values. The Myocardial Integrity Topology (MIT) module can serve as a guide for maintaining myocardial integrity. We evaluate the TSW model on the CAMUS dataset and a private echocardiography myocardial segmentation dataset. The qualitative and quantitative experimental results show that the TSW model significantly enhances topological accuracy while maintaining pixel-wise precision. •The TSW model can maintain both pixel-wise accuracy and topological correctness.•The PWU strategy and BST module can focus on pixels prone to change.•The MIT module can effectively keep myocardial integrity.•The TSW model is validated on two datasets. The TWS can improve topology correctness.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2023.107286</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Accuracy ; Biology ; Cardiovascular diseases ; Computers ; Datasets ; Diagnosis ; Echocardiography ; Errors ; Heart diseases ; Image quality ; Image segmentation ; Integrity ; Modules ; Myocardial Segmentation ; Persistent Homology ; Pixels ; Semantics ; Skin cancer ; Topology ; Weighting</subject><ispartof>Computers in biology and medicine, 2023-10, Vol.165, p.107286-107286, Article 107286</ispartof><rights>2023 The Author(s)</rights><rights>2023. The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c374t-76bbaa2e3e8a8b8f84101628cb01cb740daa2a9910b0e354dac90be0b899f1e13</cites><orcidid>0000-0002-7754-1273 ; 0009-0000-0055-9240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482523007515$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Sun, Song</creatorcontrib><creatorcontrib>Wang, Yonghuai</creatorcontrib><creatorcontrib>Yang, Jinzhu</creatorcontrib><creatorcontrib>Feng, Yong</creatorcontrib><creatorcontrib>Tang, Lingzhi</creatorcontrib><creatorcontrib>Liu, Shuo</creatorcontrib><creatorcontrib>Ning, Hongxia</creatorcontrib><title>Topology-sensitive weighting model for myocardial segmentation</title><title>Computers in biology and medicine</title><description>Accurate myocardial segmentation is crucial for the diagnosis of various heart diseases. However, segmentation results often suffer from topology structural errors, such as broken connections and holes, especially in cases of poor image quality. These errors are unacceptable in clinical diagnosis. We proposed a Topology-Sensitive Weight (TSW) model to keep both pixel-wise accuracy and topological correctness. Specifically, the Position Weighting Update (PWU) strategy with the Boundary-Sensitive Topology (BST) module can guide the model to focus on positions where topological features are sensitive to pixel values. The Myocardial Integrity Topology (MIT) module can serve as a guide for maintaining myocardial integrity. We evaluate the TSW model on the CAMUS dataset and a private echocardiography myocardial segmentation dataset. The qualitative and quantitative experimental results show that the TSW model significantly enhances topological accuracy while maintaining pixel-wise precision. •The TSW model can maintain both pixel-wise accuracy and topological correctness.•The PWU strategy and BST module can focus on pixels prone to change.•The MIT module can effectively keep myocardial integrity.•The TSW model is validated on two datasets. The TWS can improve topology correctness.</description><subject>Accuracy</subject><subject>Biology</subject><subject>Cardiovascular diseases</subject><subject>Computers</subject><subject>Datasets</subject><subject>Diagnosis</subject><subject>Echocardiography</subject><subject>Errors</subject><subject>Heart diseases</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Integrity</subject><subject>Modules</subject><subject>Myocardial Segmentation</subject><subject>Persistent Homology</subject><subject>Pixels</subject><subject>Semantics</subject><subject>Skin cancer</subject><subject>Topology</subject><subject>Weighting</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE9LxDAQxYMouK5-h4IXL10nTdqmF0EX_8GCl_UcknRaU9pmTbor--1tqSB48TQw83uPN4-QiMKKAs1um5Vx3U5b12G5SiBh4zpPRHZCFlTkRQwp46dkAUAh5iJJz8lFCA0AcGCwIHdbt3Otq49xwD7YwR4w-kJbfwy2r6POldhGlfNRd3RG-dKqNgpYd9gParCuvyRnlWoDXv3MJXl_etyuX-LN2_Pr-n4TG5bzIc4zrZVKkKFQQotK8Cl7IowGanTOoRyvqigoaECW8lKZAjSCFkVRUaRsSW5m3513n3sMg-xsMNi2qke3DzIRaS5SztiEXv9BG7f3_ZhupLKcFoKlMFJipox3IXis5M7bTvmjpCCncLKRv8XKqVg5FztKH2Ypjg8fLHoZjMXeYGk9mkGWzv5v8g27KIbH</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Sun, Song</creator><creator>Wang, Yonghuai</creator><creator>Yang, Jinzhu</creator><creator>Feng, Yong</creator><creator>Tang, Lingzhi</creator><creator>Liu, Shuo</creator><creator>Ning, Hongxia</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7754-1273</orcidid><orcidid>https://orcid.org/0009-0000-0055-9240</orcidid></search><sort><creationdate>202310</creationdate><title>Topology-sensitive weighting model for myocardial segmentation</title><author>Sun, Song ; Wang, Yonghuai ; Yang, Jinzhu ; Feng, Yong ; Tang, Lingzhi ; Liu, Shuo ; Ning, Hongxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-76bbaa2e3e8a8b8f84101628cb01cb740daa2a9910b0e354dac90be0b899f1e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Biology</topic><topic>Cardiovascular diseases</topic><topic>Computers</topic><topic>Datasets</topic><topic>Diagnosis</topic><topic>Echocardiography</topic><topic>Errors</topic><topic>Heart diseases</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Integrity</topic><topic>Modules</topic><topic>Myocardial Segmentation</topic><topic>Persistent Homology</topic><topic>Pixels</topic><topic>Semantics</topic><topic>Skin cancer</topic><topic>Topology</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Song</creatorcontrib><creatorcontrib>Wang, Yonghuai</creatorcontrib><creatorcontrib>Yang, Jinzhu</creatorcontrib><creatorcontrib>Feng, Yong</creatorcontrib><creatorcontrib>Tang, Lingzhi</creatorcontrib><creatorcontrib>Liu, Shuo</creatorcontrib><creatorcontrib>Ning, Hongxia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Song</au><au>Wang, Yonghuai</au><au>Yang, Jinzhu</au><au>Feng, Yong</au><au>Tang, Lingzhi</au><au>Liu, Shuo</au><au>Ning, Hongxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology-sensitive weighting model for myocardial segmentation</atitle><jtitle>Computers in biology and medicine</jtitle><date>2023-10</date><risdate>2023</risdate><volume>165</volume><spage>107286</spage><epage>107286</epage><pages>107286-107286</pages><artnum>107286</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Accurate myocardial segmentation is crucial for the diagnosis of various heart diseases. However, segmentation results often suffer from topology structural errors, such as broken connections and holes, especially in cases of poor image quality. These errors are unacceptable in clinical diagnosis. We proposed a Topology-Sensitive Weight (TSW) model to keep both pixel-wise accuracy and topological correctness. Specifically, the Position Weighting Update (PWU) strategy with the Boundary-Sensitive Topology (BST) module can guide the model to focus on positions where topological features are sensitive to pixel values. The Myocardial Integrity Topology (MIT) module can serve as a guide for maintaining myocardial integrity. We evaluate the TSW model on the CAMUS dataset and a private echocardiography myocardial segmentation dataset. The qualitative and quantitative experimental results show that the TSW model significantly enhances topological accuracy while maintaining pixel-wise precision. •The TSW model can maintain both pixel-wise accuracy and topological correctness.•The PWU strategy and BST module can focus on pixels prone to change.•The MIT module can effectively keep myocardial integrity.•The TSW model is validated on two datasets. The TWS can improve topology correctness.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compbiomed.2023.107286</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7754-1273</orcidid><orcidid>https://orcid.org/0009-0000-0055-9240</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2023-10, Vol.165, p.107286-107286, Article 107286
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2857854331
source Elsevier ScienceDirect Journals
subjects Accuracy
Biology
Cardiovascular diseases
Computers
Datasets
Diagnosis
Echocardiography
Errors
Heart diseases
Image quality
Image segmentation
Integrity
Modules
Myocardial Segmentation
Persistent Homology
Pixels
Semantics
Skin cancer
Topology
Weighting
title Topology-sensitive weighting model for myocardial segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology-sensitive%20weighting%20model%20for%20myocardial%20segmentation&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Sun,%20Song&rft.date=2023-10&rft.volume=165&rft.spage=107286&rft.epage=107286&rft.pages=107286-107286&rft.artnum=107286&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2023.107286&rft_dat=%3Cproquest_cross%3E2857854331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2867198350&rft_id=info:pmid/&rft_els_id=S0010482523007515&rfr_iscdi=true