An Extracellular Vesicle-Cloaked Multifaceted Biocatalyst for Ultrasound-Augmented Tendon Matrix Reconstruction and Immune Microenvironment Regulation

The healing of tendon injury is often hindered by peritendinous adhesion and poor regeneration caused by the accumulation of reactive oxygen species (ROS), development of inflammatory responses, and the deposition of type-III collagen. Herein, an extracellular vesicles (EVs)-cloaked enzymatic nanohy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-09, Vol.17 (17), p.16501-16516
Hauptverfasser: Rong, Xiao, Tang, Yuanjiao, Cao, Sujiao, Xiao, Sutong, Wang, Haonan, Zhu, Bihui, Huang, Songya, Adeli, Mohsen, Rodriguez, Raul D., Cheng, Chong, Ma, Lang, Qiu, Li
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16516
container_issue 17
container_start_page 16501
container_title ACS nano
container_volume 17
creator Rong, Xiao
Tang, Yuanjiao
Cao, Sujiao
Xiao, Sutong
Wang, Haonan
Zhu, Bihui
Huang, Songya
Adeli, Mohsen
Rodriguez, Raul D.
Cheng, Chong
Ma, Lang
Qiu, Li
description The healing of tendon injury is often hindered by peritendinous adhesion and poor regeneration caused by the accumulation of reactive oxygen species (ROS), development of inflammatory responses, and the deposition of type-III collagen. Herein, an extracellular vesicles (EVs)-cloaked enzymatic nanohybrid (ENEV) was constructed to serve as a multifaceted biocatalyst for ultrasound (US)-augmented tendon matrix reconstruction and immune microenvironment regulation. The ENEV-based biocatalyst exhibits integrated merits for treating tendon injury, including the efficient catalase-mimetic scavenging of ROS in the injured tissue, sustainable release of Zn2+ ions, cellular uptake augmented by US, and immunoregulation induced by EVs. Our study suggests that ENEVs can promote tenocyte proliferation and type-I collagen synthesis at an early stage by protecting tenocytes from ROS attack. The ENEVs also prompted efficient immune regulation, as the polarization of macrophages (Mφ) was reversed from M1φ to M2φ. In a rat Achilles tendon defect model, the ENEVs combined with US treatment significantly promoted functional recovery and matrix reconstruction, restored tendon morphology, suppressed intratendinous scarring, and inhibited peritendinous adhesion. Overall, this study offers an efficient nanomedicine for US-augmented tendon regeneration with improved healing outcomes and provides an alternative strategy to design multifaceted artificial biocatalysts for synergetic tissue regenerative therapies.
doi_str_mv 10.1021/acsnano.3c00911
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2857851800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2857851800</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-1c13da44604cd17ee91ea912ed6aa78380ba36bac483bbb46b36deec23a8babb3</originalsourceid><addsrcrecordid>eNp1kUtLAzEUhQdRUKtrt1kKMjZppvNY1uKj0CKIirvhJnMr0UyieUj9I_5eM7S4c3Vzc78TTu7JsjNGLxmdsDFIb8DYSy4pbRjby45Yw8uc1uXL_t95yg6zY-_fKJ1WdVUeZT8zQ643wYFEraMGR57RK6kxn2sL79iRVdRBrdM8pOZKWQkB9LcPZG0dedJJ6m00XT6Lrz2aAXpE01lDVhCc2pAHlNb44KIMKt2C6cii76NBslLSWTRfylkzSBP6miwM2El2sAbt8XRXR9nTzfXj_C5f3t8u5rNlDpzRkDPJeAdFUdJCdqxCbBhCwybYlQBVzWsqgJcCZFFzIURRCl52iHLCoRYgBB9l59t3P5z9jOhD2ys_rAIM2ujbSZ32NGU1pQkdb9Fk2nuH6_bDqR7cd8toOyTQ7hJodwkkxcVWkQbtm43OpK_8S_8CuoaPIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857851800</pqid></control><display><type>article</type><title>An Extracellular Vesicle-Cloaked Multifaceted Biocatalyst for Ultrasound-Augmented Tendon Matrix Reconstruction and Immune Microenvironment Regulation</title><source>ACS Publications</source><creator>Rong, Xiao ; Tang, Yuanjiao ; Cao, Sujiao ; Xiao, Sutong ; Wang, Haonan ; Zhu, Bihui ; Huang, Songya ; Adeli, Mohsen ; Rodriguez, Raul D. ; Cheng, Chong ; Ma, Lang ; Qiu, Li</creator><creatorcontrib>Rong, Xiao ; Tang, Yuanjiao ; Cao, Sujiao ; Xiao, Sutong ; Wang, Haonan ; Zhu, Bihui ; Huang, Songya ; Adeli, Mohsen ; Rodriguez, Raul D. ; Cheng, Chong ; Ma, Lang ; Qiu, Li</creatorcontrib><description>The healing of tendon injury is often hindered by peritendinous adhesion and poor regeneration caused by the accumulation of reactive oxygen species (ROS), development of inflammatory responses, and the deposition of type-III collagen. Herein, an extracellular vesicles (EVs)-cloaked enzymatic nanohybrid (ENEV) was constructed to serve as a multifaceted biocatalyst for ultrasound (US)-augmented tendon matrix reconstruction and immune microenvironment regulation. The ENEV-based biocatalyst exhibits integrated merits for treating tendon injury, including the efficient catalase-mimetic scavenging of ROS in the injured tissue, sustainable release of Zn2+ ions, cellular uptake augmented by US, and immunoregulation induced by EVs. Our study suggests that ENEVs can promote tenocyte proliferation and type-I collagen synthesis at an early stage by protecting tenocytes from ROS attack. The ENEVs also prompted efficient immune regulation, as the polarization of macrophages (Mφ) was reversed from M1φ to M2φ. In a rat Achilles tendon defect model, the ENEVs combined with US treatment significantly promoted functional recovery and matrix reconstruction, restored tendon morphology, suppressed intratendinous scarring, and inhibited peritendinous adhesion. Overall, this study offers an efficient nanomedicine for US-augmented tendon regeneration with improved healing outcomes and provides an alternative strategy to design multifaceted artificial biocatalysts for synergetic tissue regenerative therapies.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c00911</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2023-09, Vol.17 (17), p.16501-16516</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a310t-1c13da44604cd17ee91ea912ed6aa78380ba36bac483bbb46b36deec23a8babb3</citedby><cites>FETCH-LOGICAL-a310t-1c13da44604cd17ee91ea912ed6aa78380ba36bac483bbb46b36deec23a8babb3</cites><orcidid>0000-0002-4251-7636 ; 0000-0002-3780-3902 ; 0000-0002-6050-8039 ; 0000-0003-3741-1885 ; 0000-0002-6872-2240 ; 0000-0003-2685-9799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.3c00911$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.3c00911$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Rong, Xiao</creatorcontrib><creatorcontrib>Tang, Yuanjiao</creatorcontrib><creatorcontrib>Cao, Sujiao</creatorcontrib><creatorcontrib>Xiao, Sutong</creatorcontrib><creatorcontrib>Wang, Haonan</creatorcontrib><creatorcontrib>Zhu, Bihui</creatorcontrib><creatorcontrib>Huang, Songya</creatorcontrib><creatorcontrib>Adeli, Mohsen</creatorcontrib><creatorcontrib>Rodriguez, Raul D.</creatorcontrib><creatorcontrib>Cheng, Chong</creatorcontrib><creatorcontrib>Ma, Lang</creatorcontrib><creatorcontrib>Qiu, Li</creatorcontrib><title>An Extracellular Vesicle-Cloaked Multifaceted Biocatalyst for Ultrasound-Augmented Tendon Matrix Reconstruction and Immune Microenvironment Regulation</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The healing of tendon injury is often hindered by peritendinous adhesion and poor regeneration caused by the accumulation of reactive oxygen species (ROS), development of inflammatory responses, and the deposition of type-III collagen. Herein, an extracellular vesicles (EVs)-cloaked enzymatic nanohybrid (ENEV) was constructed to serve as a multifaceted biocatalyst for ultrasound (US)-augmented tendon matrix reconstruction and immune microenvironment regulation. The ENEV-based biocatalyst exhibits integrated merits for treating tendon injury, including the efficient catalase-mimetic scavenging of ROS in the injured tissue, sustainable release of Zn2+ ions, cellular uptake augmented by US, and immunoregulation induced by EVs. Our study suggests that ENEVs can promote tenocyte proliferation and type-I collagen synthesis at an early stage by protecting tenocytes from ROS attack. The ENEVs also prompted efficient immune regulation, as the polarization of macrophages (Mφ) was reversed from M1φ to M2φ. In a rat Achilles tendon defect model, the ENEVs combined with US treatment significantly promoted functional recovery and matrix reconstruction, restored tendon morphology, suppressed intratendinous scarring, and inhibited peritendinous adhesion. Overall, this study offers an efficient nanomedicine for US-augmented tendon regeneration with improved healing outcomes and provides an alternative strategy to design multifaceted artificial biocatalysts for synergetic tissue regenerative therapies.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLAzEUhQdRUKtrt1kKMjZppvNY1uKj0CKIirvhJnMr0UyieUj9I_5eM7S4c3Vzc78TTu7JsjNGLxmdsDFIb8DYSy4pbRjby45Yw8uc1uXL_t95yg6zY-_fKJ1WdVUeZT8zQ643wYFEraMGR57RK6kxn2sL79iRVdRBrdM8pOZKWQkB9LcPZG0dedJJ6m00XT6Lrz2aAXpE01lDVhCc2pAHlNb44KIMKt2C6cii76NBslLSWTRfylkzSBP6miwM2El2sAbt8XRXR9nTzfXj_C5f3t8u5rNlDpzRkDPJeAdFUdJCdqxCbBhCwybYlQBVzWsqgJcCZFFzIURRCl52iHLCoRYgBB9l59t3P5z9jOhD2ys_rAIM2ujbSZ32NGU1pQkdb9Fk2nuH6_bDqR7cd8toOyTQ7hJodwkkxcVWkQbtm43OpK_8S_8CuoaPIw</recordid><startdate>20230912</startdate><enddate>20230912</enddate><creator>Rong, Xiao</creator><creator>Tang, Yuanjiao</creator><creator>Cao, Sujiao</creator><creator>Xiao, Sutong</creator><creator>Wang, Haonan</creator><creator>Zhu, Bihui</creator><creator>Huang, Songya</creator><creator>Adeli, Mohsen</creator><creator>Rodriguez, Raul D.</creator><creator>Cheng, Chong</creator><creator>Ma, Lang</creator><creator>Qiu, Li</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4251-7636</orcidid><orcidid>https://orcid.org/0000-0002-3780-3902</orcidid><orcidid>https://orcid.org/0000-0002-6050-8039</orcidid><orcidid>https://orcid.org/0000-0003-3741-1885</orcidid><orcidid>https://orcid.org/0000-0002-6872-2240</orcidid><orcidid>https://orcid.org/0000-0003-2685-9799</orcidid></search><sort><creationdate>20230912</creationdate><title>An Extracellular Vesicle-Cloaked Multifaceted Biocatalyst for Ultrasound-Augmented Tendon Matrix Reconstruction and Immune Microenvironment Regulation</title><author>Rong, Xiao ; Tang, Yuanjiao ; Cao, Sujiao ; Xiao, Sutong ; Wang, Haonan ; Zhu, Bihui ; Huang, Songya ; Adeli, Mohsen ; Rodriguez, Raul D. ; Cheng, Chong ; Ma, Lang ; Qiu, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-1c13da44604cd17ee91ea912ed6aa78380ba36bac483bbb46b36deec23a8babb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rong, Xiao</creatorcontrib><creatorcontrib>Tang, Yuanjiao</creatorcontrib><creatorcontrib>Cao, Sujiao</creatorcontrib><creatorcontrib>Xiao, Sutong</creatorcontrib><creatorcontrib>Wang, Haonan</creatorcontrib><creatorcontrib>Zhu, Bihui</creatorcontrib><creatorcontrib>Huang, Songya</creatorcontrib><creatorcontrib>Adeli, Mohsen</creatorcontrib><creatorcontrib>Rodriguez, Raul D.</creatorcontrib><creatorcontrib>Cheng, Chong</creatorcontrib><creatorcontrib>Ma, Lang</creatorcontrib><creatorcontrib>Qiu, Li</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rong, Xiao</au><au>Tang, Yuanjiao</au><au>Cao, Sujiao</au><au>Xiao, Sutong</au><au>Wang, Haonan</au><au>Zhu, Bihui</au><au>Huang, Songya</au><au>Adeli, Mohsen</au><au>Rodriguez, Raul D.</au><au>Cheng, Chong</au><au>Ma, Lang</au><au>Qiu, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Extracellular Vesicle-Cloaked Multifaceted Biocatalyst for Ultrasound-Augmented Tendon Matrix Reconstruction and Immune Microenvironment Regulation</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-09-12</date><risdate>2023</risdate><volume>17</volume><issue>17</issue><spage>16501</spage><epage>16516</epage><pages>16501-16516</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The healing of tendon injury is often hindered by peritendinous adhesion and poor regeneration caused by the accumulation of reactive oxygen species (ROS), development of inflammatory responses, and the deposition of type-III collagen. Herein, an extracellular vesicles (EVs)-cloaked enzymatic nanohybrid (ENEV) was constructed to serve as a multifaceted biocatalyst for ultrasound (US)-augmented tendon matrix reconstruction and immune microenvironment regulation. The ENEV-based biocatalyst exhibits integrated merits for treating tendon injury, including the efficient catalase-mimetic scavenging of ROS in the injured tissue, sustainable release of Zn2+ ions, cellular uptake augmented by US, and immunoregulation induced by EVs. Our study suggests that ENEVs can promote tenocyte proliferation and type-I collagen synthesis at an early stage by protecting tenocytes from ROS attack. The ENEVs also prompted efficient immune regulation, as the polarization of macrophages (Mφ) was reversed from M1φ to M2φ. In a rat Achilles tendon defect model, the ENEVs combined with US treatment significantly promoted functional recovery and matrix reconstruction, restored tendon morphology, suppressed intratendinous scarring, and inhibited peritendinous adhesion. Overall, this study offers an efficient nanomedicine for US-augmented tendon regeneration with improved healing outcomes and provides an alternative strategy to design multifaceted artificial biocatalysts for synergetic tissue regenerative therapies.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.3c00911</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4251-7636</orcidid><orcidid>https://orcid.org/0000-0002-3780-3902</orcidid><orcidid>https://orcid.org/0000-0002-6050-8039</orcidid><orcidid>https://orcid.org/0000-0003-3741-1885</orcidid><orcidid>https://orcid.org/0000-0002-6872-2240</orcidid><orcidid>https://orcid.org/0000-0003-2685-9799</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-09, Vol.17 (17), p.16501-16516
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2857851800
source ACS Publications
title An Extracellular Vesicle-Cloaked Multifaceted Biocatalyst for Ultrasound-Augmented Tendon Matrix Reconstruction and Immune Microenvironment Regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Extracellular%20Vesicle-Cloaked%20Multifaceted%20Biocatalyst%20for%20Ultrasound-Augmented%20Tendon%20Matrix%20Reconstruction%20and%20Immune%20Microenvironment%20Regulation&rft.jtitle=ACS%20nano&rft.au=Rong,%20Xiao&rft.date=2023-09-12&rft.volume=17&rft.issue=17&rft.spage=16501&rft.epage=16516&rft.pages=16501-16516&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c00911&rft_dat=%3Cproquest_cross%3E2857851800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857851800&rft_id=info:pmid/&rfr_iscdi=true