PLATE: A perception-latency aware estimator

Target tracking is a popular problem with many potential applications. There has been a lot of effort on improving the quality of the detection of targets using cameras through different techniques. In general, with higher computational effort applied, i.e., a longer perception-latency, a better det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2023-11, Vol.142, p.716-730
Hauptverfasser: Aldana-López, Rodrigo, Aragüés, Rosario, Sagüés, Carlos
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Target tracking is a popular problem with many potential applications. There has been a lot of effort on improving the quality of the detection of targets using cameras through different techniques. In general, with higher computational effort applied, i.e., a longer perception-latency, a better detection accuracy is obtained. However, it is not always useful to apply the longest perception-latency allowed, particularly when the environment does not require to and when the computational resources are shared between other tasks. In this work, we propose a new Perception-LATency aware Estimator (PLATE), which uses different perception configurations in different moments of time in order to optimize a certain performance measure. This measure takes into account a perception-latency and accuracy trade-off aiming for a good compromise between quality and resource usage. Compared to other heuristic frame-skipping techniques, PLATE comes with a formal complexity and optimality analysis. The advantages of PLATE are verified by several experiments including an evaluation over a standard benchmark with real data and using state of the art deep learning object detection methods for the perception stage.
ISSN:0019-0578
1879-2022
DOI:10.1016/j.isatra.2023.08.013