An advanced biphasic porous and injectable scaffold displays a fine balance between mechanical strength and remodeling capabilities essential for cartilage regeneration

An important challenge in tissue engineering is the regeneration of functional articular cartilage (AC). In the field, biomimetic hydrogels are being extensively studied as scaffolds that recapitulate microenvironmental features or as mechanical supports for transplanted cells. New advanced hydrogel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials science 2023-10, Vol.11 (2), p.681-6822
Hauptverfasser: Zavala, Gabriela, Viafara-García, Sergio M, Novoa, Javier, Hidalgo, Carmen, Contardo, Ingrid, Díaz-Calderón, Paulo, Alejandro González-Arriagada, Wilfredo, Khoury, Maroun, Acevedo, Juan Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6822
container_issue 2
container_start_page 681
container_title Biomaterials science
container_volume 11
creator Zavala, Gabriela
Viafara-García, Sergio M
Novoa, Javier
Hidalgo, Carmen
Contardo, Ingrid
Díaz-Calderón, Paulo
Alejandro González-Arriagada, Wilfredo
Khoury, Maroun
Acevedo, Juan Pablo
description An important challenge in tissue engineering is the regeneration of functional articular cartilage (AC). In the field, biomimetic hydrogels are being extensively studied as scaffolds that recapitulate microenvironmental features or as mechanical supports for transplanted cells. New advanced hydrogel formulations based on salmon methacrylate gelatin (sGelMA), a cold-adapted biomaterial, are presented in this work. The psychrophilic nature of this biomaterial provides rheological advantages allowing the fabrication of scaffolds with high concentrations of the biopolymer and high mechanical strength, suitable for formulating injectable hydrogels with high mechanical strength for cartilage regeneration. However, highly intricate cell-laden scaffolds derived from highly concentrated sGelMA solutions could be deleterious for cells and scaffold remodeling. On this account, the current study proposes the use of sGelMA supplemented with a mesophilic sacrificial porogenic component. The cytocompatibility of different sGelMA-based formulations is tested through the encapsulation of osteoarthritic chondrocytes (OACs) and stimulated to synthesize extracellular matrix (ECM) components in vitro and in vivo . The sGelMA-derived scaffolds reach high levels of stiffness, and the inclusion of porogens impacts positively the scaffold degradability and molecular diffusion, improved fitness of OACs, increased the expression of cartilage-related genes, increased glycosaminoglycan (GAG) synthesis, and improved remodeling toward cartilage-like tissues. Altogether, these data support the use of sGelMA solutions in combination with mammalian solid gelatin beads for highly injectable formulations for cartilage regeneration, strengthening the importance of the balance between mechanical properties and remodeling capabilities. An important challenge in tissue engineering is the regeneration of functional articular cartilage (AC).
doi_str_mv 10.1039/d3bm00703k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2857841253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874717909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-d1fc07f726e006f8f17a8c55aeaa11a245c8624fc9174e441b717c2b5d2e7b7c3</originalsourceid><addsrcrecordid>eNpd0U9rHCEYBvChpNCQ5JJ7QOilBDbV0VlnjvnTpCUpvbTn4VVfd906OlG3Jd8oH7MmWxKIFwV_PPj6NM0xo2eM8uGz4WqiVFL--12z31IhF6IXw97LmdMPzVHOG1qXlANdsv3m8TwQMH8gaDREuXkN2WkyxxS3mUAwxIUN6gLKI8karI3eEOPy7OGhAmJdQKLAPwUQheUvYiAT6jUEp8GTXBKGVVk_ZyWcokHvwopomEE574rDTDBnDMVVbmOqV6k4DyusfoUBExQXw2Hz3oLPePR_P2h-XX_5efl1cffj5tvl-d1CcybKwjCrqbSyXSKlS9tbJqHXXQcIwBi0otP9shVWD0wKFIIpyaRuVWdalEpqftB82uXOKd5vMZdxclmjrxNi_ZOx7TvZC9Z2vNKPb-gmblOor6tKiho80KGq053SKeac0I5zchOkh5HR8am38YpffH_u7bbikx1OWb-41175P6LSmAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874717909</pqid></control><display><type>article</type><title>An advanced biphasic porous and injectable scaffold displays a fine balance between mechanical strength and remodeling capabilities essential for cartilage regeneration</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zavala, Gabriela ; Viafara-García, Sergio M ; Novoa, Javier ; Hidalgo, Carmen ; Contardo, Ingrid ; Díaz-Calderón, Paulo ; Alejandro González-Arriagada, Wilfredo ; Khoury, Maroun ; Acevedo, Juan Pablo</creator><creatorcontrib>Zavala, Gabriela ; Viafara-García, Sergio M ; Novoa, Javier ; Hidalgo, Carmen ; Contardo, Ingrid ; Díaz-Calderón, Paulo ; Alejandro González-Arriagada, Wilfredo ; Khoury, Maroun ; Acevedo, Juan Pablo</creatorcontrib><description>An important challenge in tissue engineering is the regeneration of functional articular cartilage (AC). In the field, biomimetic hydrogels are being extensively studied as scaffolds that recapitulate microenvironmental features or as mechanical supports for transplanted cells. New advanced hydrogel formulations based on salmon methacrylate gelatin (sGelMA), a cold-adapted biomaterial, are presented in this work. The psychrophilic nature of this biomaterial provides rheological advantages allowing the fabrication of scaffolds with high concentrations of the biopolymer and high mechanical strength, suitable for formulating injectable hydrogels with high mechanical strength for cartilage regeneration. However, highly intricate cell-laden scaffolds derived from highly concentrated sGelMA solutions could be deleterious for cells and scaffold remodeling. On this account, the current study proposes the use of sGelMA supplemented with a mesophilic sacrificial porogenic component. The cytocompatibility of different sGelMA-based formulations is tested through the encapsulation of osteoarthritic chondrocytes (OACs) and stimulated to synthesize extracellular matrix (ECM) components in vitro and in vivo . The sGelMA-derived scaffolds reach high levels of stiffness, and the inclusion of porogens impacts positively the scaffold degradability and molecular diffusion, improved fitness of OACs, increased the expression of cartilage-related genes, increased glycosaminoglycan (GAG) synthesis, and improved remodeling toward cartilage-like tissues. Altogether, these data support the use of sGelMA solutions in combination with mammalian solid gelatin beads for highly injectable formulations for cartilage regeneration, strengthening the importance of the balance between mechanical properties and remodeling capabilities. An important challenge in tissue engineering is the regeneration of functional articular cartilage (AC).</description><identifier>ISSN: 2047-4830</identifier><identifier>EISSN: 2047-4849</identifier><identifier>DOI: 10.1039/d3bm00703k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Biocompatibility ; Biomedical materials ; Biomimetics ; Biopolymers ; Cartilage ; Gelatin ; Gene expression ; Glycosaminoglycans ; Hydrogels ; Mechanical properties ; Molecular diffusion ; Regeneration ; Rheological properties ; Scaffolds ; Tissue engineering</subject><ispartof>Biomaterials science, 2023-10, Vol.11 (2), p.681-6822</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-d1fc07f726e006f8f17a8c55aeaa11a245c8624fc9174e441b717c2b5d2e7b7c3</citedby><cites>FETCH-LOGICAL-c314t-d1fc07f726e006f8f17a8c55aeaa11a245c8624fc9174e441b717c2b5d2e7b7c3</cites><orcidid>0000-0002-7404-3762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zavala, Gabriela</creatorcontrib><creatorcontrib>Viafara-García, Sergio M</creatorcontrib><creatorcontrib>Novoa, Javier</creatorcontrib><creatorcontrib>Hidalgo, Carmen</creatorcontrib><creatorcontrib>Contardo, Ingrid</creatorcontrib><creatorcontrib>Díaz-Calderón, Paulo</creatorcontrib><creatorcontrib>Alejandro González-Arriagada, Wilfredo</creatorcontrib><creatorcontrib>Khoury, Maroun</creatorcontrib><creatorcontrib>Acevedo, Juan Pablo</creatorcontrib><title>An advanced biphasic porous and injectable scaffold displays a fine balance between mechanical strength and remodeling capabilities essential for cartilage regeneration</title><title>Biomaterials science</title><description>An important challenge in tissue engineering is the regeneration of functional articular cartilage (AC). In the field, biomimetic hydrogels are being extensively studied as scaffolds that recapitulate microenvironmental features or as mechanical supports for transplanted cells. New advanced hydrogel formulations based on salmon methacrylate gelatin (sGelMA), a cold-adapted biomaterial, are presented in this work. The psychrophilic nature of this biomaterial provides rheological advantages allowing the fabrication of scaffolds with high concentrations of the biopolymer and high mechanical strength, suitable for formulating injectable hydrogels with high mechanical strength for cartilage regeneration. However, highly intricate cell-laden scaffolds derived from highly concentrated sGelMA solutions could be deleterious for cells and scaffold remodeling. On this account, the current study proposes the use of sGelMA supplemented with a mesophilic sacrificial porogenic component. The cytocompatibility of different sGelMA-based formulations is tested through the encapsulation of osteoarthritic chondrocytes (OACs) and stimulated to synthesize extracellular matrix (ECM) components in vitro and in vivo . The sGelMA-derived scaffolds reach high levels of stiffness, and the inclusion of porogens impacts positively the scaffold degradability and molecular diffusion, improved fitness of OACs, increased the expression of cartilage-related genes, increased glycosaminoglycan (GAG) synthesis, and improved remodeling toward cartilage-like tissues. Altogether, these data support the use of sGelMA solutions in combination with mammalian solid gelatin beads for highly injectable formulations for cartilage regeneration, strengthening the importance of the balance between mechanical properties and remodeling capabilities. An important challenge in tissue engineering is the regeneration of functional articular cartilage (AC).</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Biopolymers</subject><subject>Cartilage</subject><subject>Gelatin</subject><subject>Gene expression</subject><subject>Glycosaminoglycans</subject><subject>Hydrogels</subject><subject>Mechanical properties</subject><subject>Molecular diffusion</subject><subject>Regeneration</subject><subject>Rheological properties</subject><subject>Scaffolds</subject><subject>Tissue engineering</subject><issn>2047-4830</issn><issn>2047-4849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0U9rHCEYBvChpNCQ5JJ7QOilBDbV0VlnjvnTpCUpvbTn4VVfd906OlG3Jd8oH7MmWxKIFwV_PPj6NM0xo2eM8uGz4WqiVFL--12z31IhF6IXw97LmdMPzVHOG1qXlANdsv3m8TwQMH8gaDREuXkN2WkyxxS3mUAwxIUN6gLKI8karI3eEOPy7OGhAmJdQKLAPwUQheUvYiAT6jUEp8GTXBKGVVk_ZyWcokHvwopomEE574rDTDBnDMVVbmOqV6k4DyusfoUBExQXw2Hz3oLPePR_P2h-XX_5efl1cffj5tvl-d1CcybKwjCrqbSyXSKlS9tbJqHXXQcIwBi0otP9shVWD0wKFIIpyaRuVWdalEpqftB82uXOKd5vMZdxclmjrxNi_ZOx7TvZC9Z2vNKPb-gmblOor6tKiho80KGq053SKeac0I5zchOkh5HR8am38YpffH_u7bbikx1OWb-41175P6LSmAw</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Zavala, Gabriela</creator><creator>Viafara-García, Sergio M</creator><creator>Novoa, Javier</creator><creator>Hidalgo, Carmen</creator><creator>Contardo, Ingrid</creator><creator>Díaz-Calderón, Paulo</creator><creator>Alejandro González-Arriagada, Wilfredo</creator><creator>Khoury, Maroun</creator><creator>Acevedo, Juan Pablo</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7404-3762</orcidid></search><sort><creationdate>20231010</creationdate><title>An advanced biphasic porous and injectable scaffold displays a fine balance between mechanical strength and remodeling capabilities essential for cartilage regeneration</title><author>Zavala, Gabriela ; Viafara-García, Sergio M ; Novoa, Javier ; Hidalgo, Carmen ; Contardo, Ingrid ; Díaz-Calderón, Paulo ; Alejandro González-Arriagada, Wilfredo ; Khoury, Maroun ; Acevedo, Juan Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-d1fc07f726e006f8f17a8c55aeaa11a245c8624fc9174e441b717c2b5d2e7b7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Biopolymers</topic><topic>Cartilage</topic><topic>Gelatin</topic><topic>Gene expression</topic><topic>Glycosaminoglycans</topic><topic>Hydrogels</topic><topic>Mechanical properties</topic><topic>Molecular diffusion</topic><topic>Regeneration</topic><topic>Rheological properties</topic><topic>Scaffolds</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zavala, Gabriela</creatorcontrib><creatorcontrib>Viafara-García, Sergio M</creatorcontrib><creatorcontrib>Novoa, Javier</creatorcontrib><creatorcontrib>Hidalgo, Carmen</creatorcontrib><creatorcontrib>Contardo, Ingrid</creatorcontrib><creatorcontrib>Díaz-Calderón, Paulo</creatorcontrib><creatorcontrib>Alejandro González-Arriagada, Wilfredo</creatorcontrib><creatorcontrib>Khoury, Maroun</creatorcontrib><creatorcontrib>Acevedo, Juan Pablo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zavala, Gabriela</au><au>Viafara-García, Sergio M</au><au>Novoa, Javier</au><au>Hidalgo, Carmen</au><au>Contardo, Ingrid</au><au>Díaz-Calderón, Paulo</au><au>Alejandro González-Arriagada, Wilfredo</au><au>Khoury, Maroun</au><au>Acevedo, Juan Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An advanced biphasic porous and injectable scaffold displays a fine balance between mechanical strength and remodeling capabilities essential for cartilage regeneration</atitle><jtitle>Biomaterials science</jtitle><date>2023-10-10</date><risdate>2023</risdate><volume>11</volume><issue>2</issue><spage>681</spage><epage>6822</epage><pages>681-6822</pages><issn>2047-4830</issn><eissn>2047-4849</eissn><abstract>An important challenge in tissue engineering is the regeneration of functional articular cartilage (AC). In the field, biomimetic hydrogels are being extensively studied as scaffolds that recapitulate microenvironmental features or as mechanical supports for transplanted cells. New advanced hydrogel formulations based on salmon methacrylate gelatin (sGelMA), a cold-adapted biomaterial, are presented in this work. The psychrophilic nature of this biomaterial provides rheological advantages allowing the fabrication of scaffolds with high concentrations of the biopolymer and high mechanical strength, suitable for formulating injectable hydrogels with high mechanical strength for cartilage regeneration. However, highly intricate cell-laden scaffolds derived from highly concentrated sGelMA solutions could be deleterious for cells and scaffold remodeling. On this account, the current study proposes the use of sGelMA supplemented with a mesophilic sacrificial porogenic component. The cytocompatibility of different sGelMA-based formulations is tested through the encapsulation of osteoarthritic chondrocytes (OACs) and stimulated to synthesize extracellular matrix (ECM) components in vitro and in vivo . The sGelMA-derived scaffolds reach high levels of stiffness, and the inclusion of porogens impacts positively the scaffold degradability and molecular diffusion, improved fitness of OACs, increased the expression of cartilage-related genes, increased glycosaminoglycan (GAG) synthesis, and improved remodeling toward cartilage-like tissues. Altogether, these data support the use of sGelMA solutions in combination with mammalian solid gelatin beads for highly injectable formulations for cartilage regeneration, strengthening the importance of the balance between mechanical properties and remodeling capabilities. An important challenge in tissue engineering is the regeneration of functional articular cartilage (AC).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3bm00703k</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-7404-3762</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2047-4830
ispartof Biomaterials science, 2023-10, Vol.11 (2), p.681-6822
issn 2047-4830
2047-4849
language eng
recordid cdi_proquest_miscellaneous_2857841253
source Royal Society Of Chemistry Journals 2008-
subjects Biocompatibility
Biomedical materials
Biomimetics
Biopolymers
Cartilage
Gelatin
Gene expression
Glycosaminoglycans
Hydrogels
Mechanical properties
Molecular diffusion
Regeneration
Rheological properties
Scaffolds
Tissue engineering
title An advanced biphasic porous and injectable scaffold displays a fine balance between mechanical strength and remodeling capabilities essential for cartilage regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20advanced%20biphasic%20porous%20and%20injectable%20scaffold%20displays%20a%20fine%20balance%20between%20mechanical%20strength%20and%20remodeling%20capabilities%20essential%20for%20cartilage%20regeneration&rft.jtitle=Biomaterials%20science&rft.au=Zavala,%20Gabriela&rft.date=2023-10-10&rft.volume=11&rft.issue=2&rft.spage=681&rft.epage=6822&rft.pages=681-6822&rft.issn=2047-4830&rft.eissn=2047-4849&rft_id=info:doi/10.1039/d3bm00703k&rft_dat=%3Cproquest_cross%3E2874717909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874717909&rft_id=info:pmid/&rfr_iscdi=true