Robust stability with structured real parameter perturbations
This paper considers the problem of robust stabilization of a linear time-invariant system subject to variations of a real parameter vector. For a given controller the radius of the largest stability hypersphere in this parameter space is calculated. This radius is a measure of the stability margin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1987-06, Vol.32 (6), p.495-506 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 506 |
---|---|
container_issue | 6 |
container_start_page | 495 |
container_title | IEEE transactions on automatic control |
container_volume | 32 |
creator | Biernacki, R. Humor Hwang Bhattacharyya, S. |
description | This paper considers the problem of robust stabilization of a linear time-invariant system subject to variations of a real parameter vector. For a given controller the radius of the largest stability hypersphere in this parameter space is calculated. This radius is a measure of the stability margin of the closed-loop system. The results developed are applicable to all systems where the closed-loop characteristic polynomial coefficients are linear functions of the parameters of interest. In particular, this always occurs for single-input (multioutput) or single-output (multiinput) systems where the transfer function coefficients are linear or affine functions of the parameters. Many problems with transfer function coefficients which are nonlinear functions of physical parameters can be cast into this mathematical framework by suitable weighting and redefinition of functions of physical parameters as new parameters. The largest stability hyperellipsoid for the case of weighted perturbations and a stability polytope in parameter space are also determined. Based on these calculations a design procedure is proposed to robustify a given stabilizing controller. This algorithm iteratively enlarges the stability hypersphere or hyperellipsoid in parameter space and can be used to design a controller Io stabilize a plant subject to given ranges of parameter excursions. These results are illustrated by an example. |
doi_str_mv | 10.1109/TAC.1987.1104648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28574417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1104648</ieee_id><sourcerecordid>28574417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-a0e38e48578d4437aead4822e6b999e5b00baebee1f60c429dfb0fda081399123</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsFbvgpccxFvqfiXZPXgoxS8oCFLPy2wywZW0qbsbpP-9Wxr02NPwht97zDxCrhmdMUb1_Wq-mDGtqr2SpVQnZMKKQuW84OKUTChlKtdclefkIoSvJEsp2YQ8vPd2CDELEazrXNxlPy5-JumHOg4em8wjdNkWPKwxos-26NPeQnT9JlySsxa6gFfjnJKPp8fV4iVfvj2_LubLvJaMxxwoCoVSFZVqpBQVIDRScY6l1VpjYSm1gBaRtSWtJddNa2nbAFVMaM24mJK7Q-7W998DhmjWLtTYdbDBfgiGa8oKKulxMN2Q_q6Og7IUlS5lAukBrH0fgsfWbL1bg98ZRs2-eZOaN_vmzdh8styO2RBq6FoPm9qFP19VSM6FSNjNAXOI-J86hvwCJjuMDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24637964</pqid></control><display><type>article</type><title>Robust stability with structured real parameter perturbations</title><source>IEEE Electronic Library (IEL)</source><creator>Biernacki, R. ; Humor Hwang ; Bhattacharyya, S.</creator><creatorcontrib>Biernacki, R. ; Humor Hwang ; Bhattacharyya, S.</creatorcontrib><description>This paper considers the problem of robust stabilization of a linear time-invariant system subject to variations of a real parameter vector. For a given controller the radius of the largest stability hypersphere in this parameter space is calculated. This radius is a measure of the stability margin of the closed-loop system. The results developed are applicable to all systems where the closed-loop characteristic polynomial coefficients are linear functions of the parameters of interest. In particular, this always occurs for single-input (multioutput) or single-output (multiinput) systems where the transfer function coefficients are linear or affine functions of the parameters. Many problems with transfer function coefficients which are nonlinear functions of physical parameters can be cast into this mathematical framework by suitable weighting and redefinition of functions of physical parameters as new parameters. The largest stability hyperellipsoid for the case of weighted perturbations and a stability polytope in parameter space are also determined. Based on these calculations a design procedure is proposed to robustify a given stabilizing controller. This algorithm iteratively enlarges the stability hypersphere or hyperellipsoid in parameter space and can be used to design a controller Io stabilize a plant subject to given ranges of parameter excursions. These results are illustrated by an example.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1987.1104648</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Exact sciences and technology ; Feedback control ; Iterative algorithms ; Polynomials ; Robust control ; Robust stability ; Robustness ; Transfer functions ; Vectors</subject><ispartof>IEEE transactions on automatic control, 1987-06, Vol.32 (6), p.495-506</ispartof><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-a0e38e48578d4437aead4822e6b999e5b00baebee1f60c429dfb0fda081399123</citedby><cites>FETCH-LOGICAL-c412t-a0e38e48578d4437aead4822e6b999e5b00baebee1f60c429dfb0fda081399123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1104648$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1104648$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7542233$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Biernacki, R.</creatorcontrib><creatorcontrib>Humor Hwang</creatorcontrib><creatorcontrib>Bhattacharyya, S.</creatorcontrib><title>Robust stability with structured real parameter perturbations</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This paper considers the problem of robust stabilization of a linear time-invariant system subject to variations of a real parameter vector. For a given controller the radius of the largest stability hypersphere in this parameter space is calculated. This radius is a measure of the stability margin of the closed-loop system. The results developed are applicable to all systems where the closed-loop characteristic polynomial coefficients are linear functions of the parameters of interest. In particular, this always occurs for single-input (multioutput) or single-output (multiinput) systems where the transfer function coefficients are linear or affine functions of the parameters. Many problems with transfer function coefficients which are nonlinear functions of physical parameters can be cast into this mathematical framework by suitable weighting and redefinition of functions of physical parameters as new parameters. The largest stability hyperellipsoid for the case of weighted perturbations and a stability polytope in parameter space are also determined. Based on these calculations a design procedure is proposed to robustify a given stabilizing controller. This algorithm iteratively enlarges the stability hypersphere or hyperellipsoid in parameter space and can be used to design a controller Io stabilize a plant subject to given ranges of parameter excursions. These results are illustrated by an example.</description><subject>Algorithm design and analysis</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Iterative algorithms</subject><subject>Polynomials</subject><subject>Robust control</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>Transfer functions</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRsFbvgpccxFvqfiXZPXgoxS8oCFLPy2wywZW0qbsbpP-9Wxr02NPwht97zDxCrhmdMUb1_Wq-mDGtqr2SpVQnZMKKQuW84OKUTChlKtdclefkIoSvJEsp2YQ8vPd2CDELEazrXNxlPy5-JumHOg4em8wjdNkWPKwxos-26NPeQnT9JlySsxa6gFfjnJKPp8fV4iVfvj2_LubLvJaMxxwoCoVSFZVqpBQVIDRScY6l1VpjYSm1gBaRtSWtJddNa2nbAFVMaM24mJK7Q-7W998DhmjWLtTYdbDBfgiGa8oKKulxMN2Q_q6Og7IUlS5lAukBrH0fgsfWbL1bg98ZRs2-eZOaN_vmzdh8styO2RBq6FoPm9qFP19VSM6FSNjNAXOI-J86hvwCJjuMDg</recordid><startdate>19870601</startdate><enddate>19870601</enddate><creator>Biernacki, R.</creator><creator>Humor Hwang</creator><creator>Bhattacharyya, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19870601</creationdate><title>Robust stability with structured real parameter perturbations</title><author>Biernacki, R. ; Humor Hwang ; Bhattacharyya, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-a0e38e48578d4437aead4822e6b999e5b00baebee1f60c429dfb0fda081399123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Algorithm design and analysis</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Iterative algorithms</topic><topic>Polynomials</topic><topic>Robust control</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>Transfer functions</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biernacki, R.</creatorcontrib><creatorcontrib>Humor Hwang</creatorcontrib><creatorcontrib>Bhattacharyya, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Biernacki, R.</au><au>Humor Hwang</au><au>Bhattacharyya, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust stability with structured real parameter perturbations</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1987-06-01</date><risdate>1987</risdate><volume>32</volume><issue>6</issue><spage>495</spage><epage>506</epage><pages>495-506</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This paper considers the problem of robust stabilization of a linear time-invariant system subject to variations of a real parameter vector. For a given controller the radius of the largest stability hypersphere in this parameter space is calculated. This radius is a measure of the stability margin of the closed-loop system. The results developed are applicable to all systems where the closed-loop characteristic polynomial coefficients are linear functions of the parameters of interest. In particular, this always occurs for single-input (multioutput) or single-output (multiinput) systems where the transfer function coefficients are linear or affine functions of the parameters. Many problems with transfer function coefficients which are nonlinear functions of physical parameters can be cast into this mathematical framework by suitable weighting and redefinition of functions of physical parameters as new parameters. The largest stability hyperellipsoid for the case of weighted perturbations and a stability polytope in parameter space are also determined. Based on these calculations a design procedure is proposed to robustify a given stabilizing controller. This algorithm iteratively enlarges the stability hypersphere or hyperellipsoid in parameter space and can be used to design a controller Io stabilize a plant subject to given ranges of parameter excursions. These results are illustrated by an example.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.1987.1104648</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1987-06, Vol.32 (6), p.495-506 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_28574417 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Applied sciences Computer science control theory systems Control system synthesis Control theory. Systems Exact sciences and technology Feedback control Iterative algorithms Polynomials Robust control Robust stability Robustness Transfer functions Vectors |
title | Robust stability with structured real parameter perturbations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20stability%20with%20structured%20real%20parameter%20perturbations&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Biernacki,%20R.&rft.date=1987-06-01&rft.volume=32&rft.issue=6&rft.spage=495&rft.epage=506&rft.pages=495-506&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1987.1104648&rft_dat=%3Cproquest_RIE%3E28574417%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24637964&rft_id=info:pmid/&rft_ieee_id=1104648&rfr_iscdi=true |