An investigation on hot-crack mechanism of Ca addition into AZ91D alloy

In automotive components, there is a significant weight saving potential in converting to magnesium alloys. Adding Ca element is one of the most effective ways to improve the temperature and mechanical properties of magnesium alloy. However, as hot-cracks often appear in such materials, Ca addition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2005-06, Vol.40 (11), p.2931-2936
Hauptverfasser: BIN TANG, LI, Shuang-Shou, WANG, Xi-Shu, ZENG, Da-Ben, RONG WU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2936
container_issue 11
container_start_page 2931
container_title Journal of materials science
container_volume 40
creator BIN TANG
LI, Shuang-Shou
WANG, Xi-Shu
ZENG, Da-Ben
RONG WU
description In automotive components, there is a significant weight saving potential in converting to magnesium alloys. Adding Ca element is one of the most effective ways to improve the temperature and mechanical properties of magnesium alloy. However, as hot-cracks often appear in such materials, Ca addition will thus encumber the development of this magnesium alloy. There are few reports on the hot-crack mechanism of magnesium alloy with Ca. This paper focused on the investigations as why to results in the hot-crack phenomenon of Ca addition. These results indicated that Ca addition affects the solidification process of AZ91D alloy, such as elevating the tendency of divorce eutectic and forming the new temperature of Al2Ca phase. In addition, the Ca-contained phase distributed as the net-shape forms on grain boundary and results in lower boundary strength of the liquid film. Both of the above reasons would deteriorate filling capacity of the melt and the hot-crack resistance during solidification stage, resulting in the worst hot-crack property of this alloy.
doi_str_mv 10.1007/s10853-005-2440-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28572245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28572245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-a12bc32f6606f5f0da0ea1808669f4f8f0519cd7d2a68aa5c64a6c3382695b593</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxYMoWKsfwNuCKF5WJ8nmzx5L1SoUvOjFS5hmNzZ1u6mbrdBvb2oLggdhYA7zm8e8eYScU7ihAOo2UtCC5wAiZ0UBuTogAyoUzwsN_JAMABhLE0mPyUmMC0igYnRAJqM28-1XHXv_jr0PbZZqHvrcdmg_smVt59j6uMyCy8aYYVX5H8q3fchGbyW9y7BpwuaUHDlsYn2270Py-nD_Mn7Mp8-Tp_FomlsuVZ8jZTPLmZMSpBMOKoQaqQYtZekKpx0IWtpKVQylRhRWFigt55rJUsxEyYfkaqe76sLnOp1tlj7aummwrcM6GqaTL1aIBF7_C6Z_MapKzrfoxR90EdZdm2wYxkQpipKBShTdUbYLMXa1M6vOL7HbJCmzzcDsMjDptWabgdnuXO6VMVpsXIet9fF3UaUcNAX-DeVyg3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259549207</pqid></control><display><type>article</type><title>An investigation on hot-crack mechanism of Ca addition into AZ91D alloy</title><source>SpringerLink Journals - AutoHoldings</source><creator>BIN TANG ; LI, Shuang-Shou ; WANG, Xi-Shu ; ZENG, Da-Ben ; RONG WU</creator><creatorcontrib>BIN TANG ; LI, Shuang-Shou ; WANG, Xi-Shu ; ZENG, Da-Ben ; RONG WU</creatorcontrib><description>In automotive components, there is a significant weight saving potential in converting to magnesium alloys. Adding Ca element is one of the most effective ways to improve the temperature and mechanical properties of magnesium alloy. However, as hot-cracks often appear in such materials, Ca addition will thus encumber the development of this magnesium alloy. There are few reports on the hot-crack mechanism of magnesium alloy with Ca. This paper focused on the investigations as why to results in the hot-crack phenomenon of Ca addition. These results indicated that Ca addition affects the solidification process of AZ91D alloy, such as elevating the tendency of divorce eutectic and forming the new temperature of Al2Ca phase. In addition, the Ca-contained phase distributed as the net-shape forms on grain boundary and results in lower boundary strength of the liquid film. Both of the above reasons would deteriorate filling capacity of the melt and the hot-crack resistance during solidification stage, resulting in the worst hot-crack property of this alloy.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-005-2440-7</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Alloying additive ; Alloying elements ; Applied sciences ; Automotive components ; Automotive parts ; Boundaries ; Crack propagation ; Cracks ; Deterioration ; Exact sciences and technology ; Fuel consumption ; Grain boundaries ; Magnesium alloys ; Magnesium base alloys ; Materials science ; Mechanical properties ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Melts ; Metals. Metallurgy ; Net shape ; Solidification ; Weight reduction</subject><ispartof>Journal of materials science, 2005-06, Vol.40 (11), p.2931-2936</ispartof><rights>2006 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2005). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-a12bc32f6606f5f0da0ea1808669f4f8f0519cd7d2a68aa5c64a6c3382695b593</citedby><cites>FETCH-LOGICAL-c367t-a12bc32f6606f5f0da0ea1808669f4f8f0519cd7d2a68aa5c64a6c3382695b593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17000810$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BIN TANG</creatorcontrib><creatorcontrib>LI, Shuang-Shou</creatorcontrib><creatorcontrib>WANG, Xi-Shu</creatorcontrib><creatorcontrib>ZENG, Da-Ben</creatorcontrib><creatorcontrib>RONG WU</creatorcontrib><title>An investigation on hot-crack mechanism of Ca addition into AZ91D alloy</title><title>Journal of materials science</title><description>In automotive components, there is a significant weight saving potential in converting to magnesium alloys. Adding Ca element is one of the most effective ways to improve the temperature and mechanical properties of magnesium alloy. However, as hot-cracks often appear in such materials, Ca addition will thus encumber the development of this magnesium alloy. There are few reports on the hot-crack mechanism of magnesium alloy with Ca. This paper focused on the investigations as why to results in the hot-crack phenomenon of Ca addition. These results indicated that Ca addition affects the solidification process of AZ91D alloy, such as elevating the tendency of divorce eutectic and forming the new temperature of Al2Ca phase. In addition, the Ca-contained phase distributed as the net-shape forms on grain boundary and results in lower boundary strength of the liquid film. Both of the above reasons would deteriorate filling capacity of the melt and the hot-crack resistance during solidification stage, resulting in the worst hot-crack property of this alloy.</description><subject>Alloying additive</subject><subject>Alloying elements</subject><subject>Applied sciences</subject><subject>Automotive components</subject><subject>Automotive parts</subject><subject>Boundaries</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Deterioration</subject><subject>Exact sciences and technology</subject><subject>Fuel consumption</subject><subject>Grain boundaries</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Melts</subject><subject>Metals. Metallurgy</subject><subject>Net shape</subject><subject>Solidification</subject><subject>Weight reduction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9LAzEQxYMoWKsfwNuCKF5WJ8nmzx5L1SoUvOjFS5hmNzZ1u6mbrdBvb2oLggdhYA7zm8e8eYScU7ihAOo2UtCC5wAiZ0UBuTogAyoUzwsN_JAMABhLE0mPyUmMC0igYnRAJqM28-1XHXv_jr0PbZZqHvrcdmg_smVt59j6uMyCy8aYYVX5H8q3fchGbyW9y7BpwuaUHDlsYn2270Py-nD_Mn7Mp8-Tp_FomlsuVZ8jZTPLmZMSpBMOKoQaqQYtZekKpx0IWtpKVQylRhRWFigt55rJUsxEyYfkaqe76sLnOp1tlj7aummwrcM6GqaTL1aIBF7_C6Z_MapKzrfoxR90EdZdm2wYxkQpipKBShTdUbYLMXa1M6vOL7HbJCmzzcDsMjDptWabgdnuXO6VMVpsXIet9fF3UaUcNAX-DeVyg3s</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>BIN TANG</creator><creator>LI, Shuang-Shou</creator><creator>WANG, Xi-Shu</creator><creator>ZENG, Da-Ben</creator><creator>RONG WU</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20050601</creationdate><title>An investigation on hot-crack mechanism of Ca addition into AZ91D alloy</title><author>BIN TANG ; LI, Shuang-Shou ; WANG, Xi-Shu ; ZENG, Da-Ben ; RONG WU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-a12bc32f6606f5f0da0ea1808669f4f8f0519cd7d2a68aa5c64a6c3382695b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alloying additive</topic><topic>Alloying elements</topic><topic>Applied sciences</topic><topic>Automotive components</topic><topic>Automotive parts</topic><topic>Boundaries</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Deterioration</topic><topic>Exact sciences and technology</topic><topic>Fuel consumption</topic><topic>Grain boundaries</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Melts</topic><topic>Metals. Metallurgy</topic><topic>Net shape</topic><topic>Solidification</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BIN TANG</creatorcontrib><creatorcontrib>LI, Shuang-Shou</creatorcontrib><creatorcontrib>WANG, Xi-Shu</creatorcontrib><creatorcontrib>ZENG, Da-Ben</creatorcontrib><creatorcontrib>RONG WU</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BIN TANG</au><au>LI, Shuang-Shou</au><au>WANG, Xi-Shu</au><au>ZENG, Da-Ben</au><au>RONG WU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An investigation on hot-crack mechanism of Ca addition into AZ91D alloy</atitle><jtitle>Journal of materials science</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>40</volume><issue>11</issue><spage>2931</spage><epage>2936</epage><pages>2931-2936</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>In automotive components, there is a significant weight saving potential in converting to magnesium alloys. Adding Ca element is one of the most effective ways to improve the temperature and mechanical properties of magnesium alloy. However, as hot-cracks often appear in such materials, Ca addition will thus encumber the development of this magnesium alloy. There are few reports on the hot-crack mechanism of magnesium alloy with Ca. This paper focused on the investigations as why to results in the hot-crack phenomenon of Ca addition. These results indicated that Ca addition affects the solidification process of AZ91D alloy, such as elevating the tendency of divorce eutectic and forming the new temperature of Al2Ca phase. In addition, the Ca-contained phase distributed as the net-shape forms on grain boundary and results in lower boundary strength of the liquid film. Both of the above reasons would deteriorate filling capacity of the melt and the hot-crack resistance during solidification stage, resulting in the worst hot-crack property of this alloy.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10853-005-2440-7</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2005-06, Vol.40 (11), p.2931-2936
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_28572245
source SpringerLink Journals - AutoHoldings
subjects Alloying additive
Alloying elements
Applied sciences
Automotive components
Automotive parts
Boundaries
Crack propagation
Cracks
Deterioration
Exact sciences and technology
Fuel consumption
Grain boundaries
Magnesium alloys
Magnesium base alloys
Materials science
Mechanical properties
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Melts
Metals. Metallurgy
Net shape
Solidification
Weight reduction
title An investigation on hot-crack mechanism of Ca addition into AZ91D alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20investigation%20on%20hot-crack%20mechanism%20of%20Ca%20addition%20into%20AZ91D%20alloy&rft.jtitle=Journal%20of%20materials%20science&rft.au=BIN%20TANG&rft.date=2005-06-01&rft.volume=40&rft.issue=11&rft.spage=2931&rft.epage=2936&rft.pages=2931-2936&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-005-2440-7&rft_dat=%3Cproquest_cross%3E28572245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259549207&rft_id=info:pmid/&rfr_iscdi=true