An investigation on hot-crack mechanism of Ca addition into AZ91D alloy
In automotive components, there is a significant weight saving potential in converting to magnesium alloys. Adding Ca element is one of the most effective ways to improve the temperature and mechanical properties of magnesium alloy. However, as hot-cracks often appear in such materials, Ca addition...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2005-06, Vol.40 (11), p.2931-2936 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2936 |
---|---|
container_issue | 11 |
container_start_page | 2931 |
container_title | Journal of materials science |
container_volume | 40 |
creator | BIN TANG LI, Shuang-Shou WANG, Xi-Shu ZENG, Da-Ben RONG WU |
description | In automotive components, there is a significant weight saving potential in converting to magnesium alloys. Adding Ca element is one of the most effective ways to improve the temperature and mechanical properties of magnesium alloy. However, as hot-cracks often appear in such materials, Ca addition will thus encumber the development of this magnesium alloy. There are few reports on the hot-crack mechanism of magnesium alloy with Ca. This paper focused on the investigations as why to results in the hot-crack phenomenon of Ca addition. These results indicated that Ca addition affects the solidification process of AZ91D alloy, such as elevating the tendency of divorce eutectic and forming the new temperature of Al2Ca phase. In addition, the Ca-contained phase distributed as the net-shape forms on grain boundary and results in lower boundary strength of the liquid film. Both of the above reasons would deteriorate filling capacity of the melt and the hot-crack resistance during solidification stage, resulting in the worst hot-crack property of this alloy. |
doi_str_mv | 10.1007/s10853-005-2440-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28572245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28572245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-a12bc32f6606f5f0da0ea1808669f4f8f0519cd7d2a68aa5c64a6c3382695b593</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxYMoWKsfwNuCKF5WJ8nmzx5L1SoUvOjFS5hmNzZ1u6mbrdBvb2oLggdhYA7zm8e8eYScU7ihAOo2UtCC5wAiZ0UBuTogAyoUzwsN_JAMABhLE0mPyUmMC0igYnRAJqM28-1XHXv_jr0PbZZqHvrcdmg_smVt59j6uMyCy8aYYVX5H8q3fchGbyW9y7BpwuaUHDlsYn2270Py-nD_Mn7Mp8-Tp_FomlsuVZ8jZTPLmZMSpBMOKoQaqQYtZekKpx0IWtpKVQylRhRWFigt55rJUsxEyYfkaqe76sLnOp1tlj7aummwrcM6GqaTL1aIBF7_C6Z_MapKzrfoxR90EdZdm2wYxkQpipKBShTdUbYLMXa1M6vOL7HbJCmzzcDsMjDptWabgdnuXO6VMVpsXIet9fF3UaUcNAX-DeVyg3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259549207</pqid></control><display><type>article</type><title>An investigation on hot-crack mechanism of Ca addition into AZ91D alloy</title><source>SpringerLink Journals - AutoHoldings</source><creator>BIN TANG ; LI, Shuang-Shou ; WANG, Xi-Shu ; ZENG, Da-Ben ; RONG WU</creator><creatorcontrib>BIN TANG ; LI, Shuang-Shou ; WANG, Xi-Shu ; ZENG, Da-Ben ; RONG WU</creatorcontrib><description>In automotive components, there is a significant weight saving potential in converting to magnesium alloys. Adding Ca element is one of the most effective ways to improve the temperature and mechanical properties of magnesium alloy. However, as hot-cracks often appear in such materials, Ca addition will thus encumber the development of this magnesium alloy. There are few reports on the hot-crack mechanism of magnesium alloy with Ca. This paper focused on the investigations as why to results in the hot-crack phenomenon of Ca addition. These results indicated that Ca addition affects the solidification process of AZ91D alloy, such as elevating the tendency of divorce eutectic and forming the new temperature of Al2Ca phase. In addition, the Ca-contained phase distributed as the net-shape forms on grain boundary and results in lower boundary strength of the liquid film. Both of the above reasons would deteriorate filling capacity of the melt and the hot-crack resistance during solidification stage, resulting in the worst hot-crack property of this alloy.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-005-2440-7</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Alloying additive ; Alloying elements ; Applied sciences ; Automotive components ; Automotive parts ; Boundaries ; Crack propagation ; Cracks ; Deterioration ; Exact sciences and technology ; Fuel consumption ; Grain boundaries ; Magnesium alloys ; Magnesium base alloys ; Materials science ; Mechanical properties ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Melts ; Metals. Metallurgy ; Net shape ; Solidification ; Weight reduction</subject><ispartof>Journal of materials science, 2005-06, Vol.40 (11), p.2931-2936</ispartof><rights>2006 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2005). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-a12bc32f6606f5f0da0ea1808669f4f8f0519cd7d2a68aa5c64a6c3382695b593</citedby><cites>FETCH-LOGICAL-c367t-a12bc32f6606f5f0da0ea1808669f4f8f0519cd7d2a68aa5c64a6c3382695b593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17000810$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BIN TANG</creatorcontrib><creatorcontrib>LI, Shuang-Shou</creatorcontrib><creatorcontrib>WANG, Xi-Shu</creatorcontrib><creatorcontrib>ZENG, Da-Ben</creatorcontrib><creatorcontrib>RONG WU</creatorcontrib><title>An investigation on hot-crack mechanism of Ca addition into AZ91D alloy</title><title>Journal of materials science</title><description>In automotive components, there is a significant weight saving potential in converting to magnesium alloys. Adding Ca element is one of the most effective ways to improve the temperature and mechanical properties of magnesium alloy. However, as hot-cracks often appear in such materials, Ca addition will thus encumber the development of this magnesium alloy. There are few reports on the hot-crack mechanism of magnesium alloy with Ca. This paper focused on the investigations as why to results in the hot-crack phenomenon of Ca addition. These results indicated that Ca addition affects the solidification process of AZ91D alloy, such as elevating the tendency of divorce eutectic and forming the new temperature of Al2Ca phase. In addition, the Ca-contained phase distributed as the net-shape forms on grain boundary and results in lower boundary strength of the liquid film. Both of the above reasons would deteriorate filling capacity of the melt and the hot-crack resistance during solidification stage, resulting in the worst hot-crack property of this alloy.</description><subject>Alloying additive</subject><subject>Alloying elements</subject><subject>Applied sciences</subject><subject>Automotive components</subject><subject>Automotive parts</subject><subject>Boundaries</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Deterioration</subject><subject>Exact sciences and technology</subject><subject>Fuel consumption</subject><subject>Grain boundaries</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Melts</subject><subject>Metals. Metallurgy</subject><subject>Net shape</subject><subject>Solidification</subject><subject>Weight reduction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9LAzEQxYMoWKsfwNuCKF5WJ8nmzx5L1SoUvOjFS5hmNzZ1u6mbrdBvb2oLggdhYA7zm8e8eYScU7ihAOo2UtCC5wAiZ0UBuTogAyoUzwsN_JAMABhLE0mPyUmMC0igYnRAJqM28-1XHXv_jr0PbZZqHvrcdmg_smVt59j6uMyCy8aYYVX5H8q3fchGbyW9y7BpwuaUHDlsYn2270Py-nD_Mn7Mp8-Tp_FomlsuVZ8jZTPLmZMSpBMOKoQaqQYtZekKpx0IWtpKVQylRhRWFigt55rJUsxEyYfkaqe76sLnOp1tlj7aummwrcM6GqaTL1aIBF7_C6Z_MapKzrfoxR90EdZdm2wYxkQpipKBShTdUbYLMXa1M6vOL7HbJCmzzcDsMjDptWabgdnuXO6VMVpsXIet9fF3UaUcNAX-DeVyg3s</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>BIN TANG</creator><creator>LI, Shuang-Shou</creator><creator>WANG, Xi-Shu</creator><creator>ZENG, Da-Ben</creator><creator>RONG WU</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20050601</creationdate><title>An investigation on hot-crack mechanism of Ca addition into AZ91D alloy</title><author>BIN TANG ; LI, Shuang-Shou ; WANG, Xi-Shu ; ZENG, Da-Ben ; RONG WU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-a12bc32f6606f5f0da0ea1808669f4f8f0519cd7d2a68aa5c64a6c3382695b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alloying additive</topic><topic>Alloying elements</topic><topic>Applied sciences</topic><topic>Automotive components</topic><topic>Automotive parts</topic><topic>Boundaries</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Deterioration</topic><topic>Exact sciences and technology</topic><topic>Fuel consumption</topic><topic>Grain boundaries</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Melts</topic><topic>Metals. Metallurgy</topic><topic>Net shape</topic><topic>Solidification</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BIN TANG</creatorcontrib><creatorcontrib>LI, Shuang-Shou</creatorcontrib><creatorcontrib>WANG, Xi-Shu</creatorcontrib><creatorcontrib>ZENG, Da-Ben</creatorcontrib><creatorcontrib>RONG WU</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BIN TANG</au><au>LI, Shuang-Shou</au><au>WANG, Xi-Shu</au><au>ZENG, Da-Ben</au><au>RONG WU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An investigation on hot-crack mechanism of Ca addition into AZ91D alloy</atitle><jtitle>Journal of materials science</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>40</volume><issue>11</issue><spage>2931</spage><epage>2936</epage><pages>2931-2936</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>In automotive components, there is a significant weight saving potential in converting to magnesium alloys. Adding Ca element is one of the most effective ways to improve the temperature and mechanical properties of magnesium alloy. However, as hot-cracks often appear in such materials, Ca addition will thus encumber the development of this magnesium alloy. There are few reports on the hot-crack mechanism of magnesium alloy with Ca. This paper focused on the investigations as why to results in the hot-crack phenomenon of Ca addition. These results indicated that Ca addition affects the solidification process of AZ91D alloy, such as elevating the tendency of divorce eutectic and forming the new temperature of Al2Ca phase. In addition, the Ca-contained phase distributed as the net-shape forms on grain boundary and results in lower boundary strength of the liquid film. Both of the above reasons would deteriorate filling capacity of the melt and the hot-crack resistance during solidification stage, resulting in the worst hot-crack property of this alloy.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10853-005-2440-7</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2005-06, Vol.40 (11), p.2931-2936 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_28572245 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloying additive Alloying elements Applied sciences Automotive components Automotive parts Boundaries Crack propagation Cracks Deterioration Exact sciences and technology Fuel consumption Grain boundaries Magnesium alloys Magnesium base alloys Materials science Mechanical properties Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Melts Metals. Metallurgy Net shape Solidification Weight reduction |
title | An investigation on hot-crack mechanism of Ca addition into AZ91D alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20investigation%20on%20hot-crack%20mechanism%20of%20Ca%20addition%20into%20AZ91D%20alloy&rft.jtitle=Journal%20of%20materials%20science&rft.au=BIN%20TANG&rft.date=2005-06-01&rft.volume=40&rft.issue=11&rft.spage=2931&rft.epage=2936&rft.pages=2931-2936&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-005-2440-7&rft_dat=%3Cproquest_cross%3E28572245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259549207&rft_id=info:pmid/&rfr_iscdi=true |