A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems

This work presents a methodology for simulation of fuel cells to be used in power production in small on-site power/cogeneration plants that use natural gas as fuel. The methodology contemplates thermodynamics and electrochemical aspects related to molten carbonate and solid oxide fuel cells (MCFC a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2005-03, Vol.142 (1), p.160-168
Hauptverfasser: Matelli, José Alexandre, Bazzo, Edson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue 1
container_start_page 160
container_title Journal of power sources
container_volume 142
creator Matelli, José Alexandre
Bazzo, Edson
description This work presents a methodology for simulation of fuel cells to be used in power production in small on-site power/cogeneration plants that use natural gas as fuel. The methodology contemplates thermodynamics and electrochemical aspects related to molten carbonate and solid oxide fuel cells (MCFC and SOFC, respectively). Internal steam reforming of the natural gas hydrocarbons is considered for hydrogen production. From inputs as cell potential, cell power, number of cell in the stack, ancillary systems power consumption, reformed natural gas composition and hydrogen utilization factor, the simulation gives the natural gas consumption, anode and cathode stream gases temperature and composition, and thermodynamic, electrochemical and practical efficiencies. Both energetic and exergetic methods are considered for performance analysis. The results obtained from natural gas reforming thermodynamics simulation show that the hydrogen production is maximum around 700 °C, for a steam/carbon ratio equal to 3. As shown in the literature, the found results indicate that the SOFC is more efficient than MCFC.
doi_str_mv 10.1016/j.jpowsour.2004.09.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28566323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775304011024</els_id><sourcerecordid>28566323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-1f5f84d0358e15ea2fffcc35a1a68c475d1542754e24ca2bdf8ac5af179400763</originalsourceid><addsrcrecordid>eNqFkMtu2zAQRYkiAeo8fqHgpl1FylB8ybsEQR8BAnTTrgmGGto0JNEhqQb--9Jwii6zms25c2cOIZ8YtAyYut21u318zXFJbQcgWli3wNcfyIr1mjedlvKMrIDrvtFa8o_kIucdADCmYUWGezph2cYhjnFzoD4mWraYpjgcZjsFR3OYltGWEGcaPd2GzZYWnPaYbFkS3tAwF0yzHWnCGp7CvKF-wZE6HEeaD7nC-YqceztmvH6bl-T3t6-_Hn40Tz-_Pz7cPzVOCFka5qXvxQBc9sgk2s577xyXllnVO6HlwKSo_wjshLPd8-B766T1TK8FgFb8knw57d2n-LJgLmYK-XiInTEu2XS9VIp3_F2QCc2rN6igOoEuxZzri2afwmTTwTAwR_tmZ_7ZN0f7Btam2q_Bz28NNjs7-mRnF_L_tFKKqf7I3Z04rF7-BEwmu4CzwyEkdMUMMbxX9RducKEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14737550</pqid></control><display><type>article</type><title>A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems</title><source>Elsevier ScienceDirect Journals</source><creator>Matelli, José Alexandre ; Bazzo, Edson</creator><creatorcontrib>Matelli, José Alexandre ; Bazzo, Edson</creatorcontrib><description>This work presents a methodology for simulation of fuel cells to be used in power production in small on-site power/cogeneration plants that use natural gas as fuel. The methodology contemplates thermodynamics and electrochemical aspects related to molten carbonate and solid oxide fuel cells (MCFC and SOFC, respectively). Internal steam reforming of the natural gas hydrocarbons is considered for hydrogen production. From inputs as cell potential, cell power, number of cell in the stack, ancillary systems power consumption, reformed natural gas composition and hydrogen utilization factor, the simulation gives the natural gas consumption, anode and cathode stream gases temperature and composition, and thermodynamic, electrochemical and practical efficiencies. Both energetic and exergetic methods are considered for performance analysis. The results obtained from natural gas reforming thermodynamics simulation show that the hydrogen production is maximum around 700 °C, for a steam/carbon ratio equal to 3. As shown in the literature, the found results indicate that the SOFC is more efficient than MCFC.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2004.09.039</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Combined power plants ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cell ; Fuel cells ; Hydrogen ; Installations for energy generation and conversion: thermal and electrical energy ; Natural gas reforming ; Simulation</subject><ispartof>Journal of power sources, 2005-03, Vol.142 (1), p.160-168</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-1f5f84d0358e15ea2fffcc35a1a68c475d1542754e24ca2bdf8ac5af179400763</citedby><cites>FETCH-LOGICAL-c445t-1f5f84d0358e15ea2fffcc35a1a68c475d1542754e24ca2bdf8ac5af179400763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775304011024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16661689$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Matelli, José Alexandre</creatorcontrib><creatorcontrib>Bazzo, Edson</creatorcontrib><title>A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems</title><title>Journal of power sources</title><description>This work presents a methodology for simulation of fuel cells to be used in power production in small on-site power/cogeneration plants that use natural gas as fuel. The methodology contemplates thermodynamics and electrochemical aspects related to molten carbonate and solid oxide fuel cells (MCFC and SOFC, respectively). Internal steam reforming of the natural gas hydrocarbons is considered for hydrogen production. From inputs as cell potential, cell power, number of cell in the stack, ancillary systems power consumption, reformed natural gas composition and hydrogen utilization factor, the simulation gives the natural gas consumption, anode and cathode stream gases temperature and composition, and thermodynamic, electrochemical and practical efficiencies. Both energetic and exergetic methods are considered for performance analysis. The results obtained from natural gas reforming thermodynamics simulation show that the hydrogen production is maximum around 700 °C, for a steam/carbon ratio equal to 3. As shown in the literature, the found results indicate that the SOFC is more efficient than MCFC.</description><subject>Applied sciences</subject><subject>Combined power plants</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cell</subject><subject>Fuel cells</subject><subject>Hydrogen</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Natural gas reforming</subject><subject>Simulation</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkMtu2zAQRYkiAeo8fqHgpl1FylB8ybsEQR8BAnTTrgmGGto0JNEhqQb--9Jwii6zms25c2cOIZ8YtAyYut21u318zXFJbQcgWli3wNcfyIr1mjedlvKMrIDrvtFa8o_kIucdADCmYUWGezph2cYhjnFzoD4mWraYpjgcZjsFR3OYltGWEGcaPd2GzZYWnPaYbFkS3tAwF0yzHWnCGp7CvKF-wZE6HEeaD7nC-YqceztmvH6bl-T3t6-_Hn40Tz-_Pz7cPzVOCFka5qXvxQBc9sgk2s577xyXllnVO6HlwKSo_wjshLPd8-B766T1TK8FgFb8knw57d2n-LJgLmYK-XiInTEu2XS9VIp3_F2QCc2rN6igOoEuxZzri2afwmTTwTAwR_tmZ_7ZN0f7Btam2q_Bz28NNjs7-mRnF_L_tFKKqf7I3Z04rF7-BEwmu4CzwyEkdMUMMbxX9RducKEg</recordid><startdate>20050324</startdate><enddate>20050324</enddate><creator>Matelli, José Alexandre</creator><creator>Bazzo, Edson</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20050324</creationdate><title>A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems</title><author>Matelli, José Alexandre ; Bazzo, Edson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-1f5f84d0358e15ea2fffcc35a1a68c475d1542754e24ca2bdf8ac5af179400763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Combined power plants</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cell</topic><topic>Fuel cells</topic><topic>Hydrogen</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Natural gas reforming</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matelli, José Alexandre</creatorcontrib><creatorcontrib>Bazzo, Edson</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matelli, José Alexandre</au><au>Bazzo, Edson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems</atitle><jtitle>Journal of power sources</jtitle><date>2005-03-24</date><risdate>2005</risdate><volume>142</volume><issue>1</issue><spage>160</spage><epage>168</epage><pages>160-168</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>This work presents a methodology for simulation of fuel cells to be used in power production in small on-site power/cogeneration plants that use natural gas as fuel. The methodology contemplates thermodynamics and electrochemical aspects related to molten carbonate and solid oxide fuel cells (MCFC and SOFC, respectively). Internal steam reforming of the natural gas hydrocarbons is considered for hydrogen production. From inputs as cell potential, cell power, number of cell in the stack, ancillary systems power consumption, reformed natural gas composition and hydrogen utilization factor, the simulation gives the natural gas consumption, anode and cathode stream gases temperature and composition, and thermodynamic, electrochemical and practical efficiencies. Both energetic and exergetic methods are considered for performance analysis. The results obtained from natural gas reforming thermodynamics simulation show that the hydrogen production is maximum around 700 °C, for a steam/carbon ratio equal to 3. As shown in the literature, the found results indicate that the SOFC is more efficient than MCFC.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2004.09.039</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2005-03, Vol.142 (1), p.160-168
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_28566323
source Elsevier ScienceDirect Journals
subjects Applied sciences
Combined power plants
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cell
Fuel cells
Hydrogen
Installations for energy generation and conversion: thermal and electrical energy
Natural gas reforming
Simulation
title A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20methodology%20for%20thermodynamic%20simulation%20of%20high%20temperature,%20internal%20reforming%20fuel%20cell%20systems&rft.jtitle=Journal%20of%20power%20sources&rft.au=Matelli,%20Jos%C3%A9%20Alexandre&rft.date=2005-03-24&rft.volume=142&rft.issue=1&rft.spage=160&rft.epage=168&rft.pages=160-168&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2004.09.039&rft_dat=%3Cproquest_cross%3E28566323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14737550&rft_id=info:pmid/&rft_els_id=S0378775304011024&rfr_iscdi=true