Hybrid Models of Neural Networks and Genetic Algorithms for Predicting Preliminary Cost Estimates

This technical note applies hybrid models of neural networks (NN) and genetic algorithms (GA) to cost estimation of residential buildings to predict preliminary cost estimates. Data used in the study are for residential buildings constructed from 1997 to 2000 in Seoul, Korea. These are used in train...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computing in civil engineering 2005-04, Vol.19 (2), p.208-211
Hauptverfasser: Kim, G. H, Seo, D. S, Kang, K. I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 2
container_start_page 208
container_title Journal of computing in civil engineering
container_volume 19
creator Kim, G. H
Seo, D. S
Kang, K. I
description This technical note applies hybrid models of neural networks (NN) and genetic algorithms (GA) to cost estimation of residential buildings to predict preliminary cost estimates. Data used in the study are for residential buildings constructed from 1997 to 2000 in Seoul, Korea. These are used in training each model and evaluating its performance. The models applied were Model I, which determines each parameter of a back-propagation network by a trial-and-error process; Model II, which determines each parameter of a back-propagation network by GAs; and Model III, which trains weights of NNs using genetic algorithms. The research revealed that optimizing each parameter of back-propagation networks using GAs is most effective in estimating the preliminary costs of residential buildings. Therefore, GAs may help estimators overcome the problem of the lack of adequate rules for determining the parameters of NNs.
doi_str_mv 10.1061/(ASCE)0887-3801(2005)19:2(208)
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28561883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28561883</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-44c6131396615c4a2ba0d0422373ba5f43ea276220d507b357f70787b859caf13</originalsourceid><addsrcrecordid>eNp9kMtOAyEUhonRxFp9BzY2djHKbYAxcdE09ZJ4S9Q1YRimotNBgcb07WVSoztX5198nJ_zATDB6BQjjs9OZk_zxRRJKQoqET4hCJVTXJ2TnOR0B4xwxWhRMil2wegX2wcHMb4hhAgXbAT09aYOroF3vrFdhL6F93YddJdH-vLhPULdN_DK9jY5A2fd0geXXlcRtj7Ax2AbZ5Lrl0Ps3Mr1Omzg3McEFzG5lU42HoK9VnfRHv3MMXi5XDzPr4vbh6ub-ey20FRUqWDMcEwxrTjHpWGa1Bo1iBFCBa112TJqNRGcENSUSNS0FK1AQopalpXRLaZjMNnu_Qj-c21jUisXje063Vu_jorIkmMpaQYvtqAJPsZgW_UR8lfDRmGkBrNKDWbVoEwNytRgVuFKkZxkfn_8U6Sj0V0bdG9c_FvCOSOYscxVWy5jVr35dejz_b8l_3Z8A_WdinM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28561883</pqid></control><display><type>article</type><title>Hybrid Models of Neural Networks and Genetic Algorithms for Predicting Preliminary Cost Estimates</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Kim, G. H ; Seo, D. S ; Kang, K. I</creator><creatorcontrib>Kim, G. H ; Seo, D. S ; Kang, K. I</creatorcontrib><description>This technical note applies hybrid models of neural networks (NN) and genetic algorithms (GA) to cost estimation of residential buildings to predict preliminary cost estimates. Data used in the study are for residential buildings constructed from 1997 to 2000 in Seoul, Korea. These are used in training each model and evaluating its performance. The models applied were Model I, which determines each parameter of a back-propagation network by a trial-and-error process; Model II, which determines each parameter of a back-propagation network by GAs; and Model III, which trains weights of NNs using genetic algorithms. The research revealed that optimizing each parameter of back-propagation networks using GAs is most effective in estimating the preliminary costs of residential buildings. Therefore, GAs may help estimators overcome the problem of the lack of adequate rules for determining the parameters of NNs.</description><identifier>ISSN: 0887-3801</identifier><identifier>EISSN: 1943-5487</identifier><identifier>DOI: 10.1061/(ASCE)0887-3801(2005)19:2(208)</identifier><identifier>CODEN: JCCEE5</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Building economics. Cost ; Buildings. Public works ; Computation methods. Tables. Charts ; Exact sciences and technology ; Structural analysis. Stresses ; TECHNICAL NOTES</subject><ispartof>Journal of computing in civil engineering, 2005-04, Vol.19 (2), p.208-211</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-44c6131396615c4a2ba0d0422373ba5f43ea276220d507b357f70787b859caf13</citedby><cites>FETCH-LOGICAL-a379t-44c6131396615c4a2ba0d0422373ba5f43ea276220d507b357f70787b859caf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0887-3801(2005)19:2(208)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0887-3801(2005)19:2(208)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,75939,75947</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16642144$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, G. H</creatorcontrib><creatorcontrib>Seo, D. S</creatorcontrib><creatorcontrib>Kang, K. I</creatorcontrib><title>Hybrid Models of Neural Networks and Genetic Algorithms for Predicting Preliminary Cost Estimates</title><title>Journal of computing in civil engineering</title><description>This technical note applies hybrid models of neural networks (NN) and genetic algorithms (GA) to cost estimation of residential buildings to predict preliminary cost estimates. Data used in the study are for residential buildings constructed from 1997 to 2000 in Seoul, Korea. These are used in training each model and evaluating its performance. The models applied were Model I, which determines each parameter of a back-propagation network by a trial-and-error process; Model II, which determines each parameter of a back-propagation network by GAs; and Model III, which trains weights of NNs using genetic algorithms. The research revealed that optimizing each parameter of back-propagation networks using GAs is most effective in estimating the preliminary costs of residential buildings. Therefore, GAs may help estimators overcome the problem of the lack of adequate rules for determining the parameters of NNs.</description><subject>Applied sciences</subject><subject>Building economics. Cost</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Exact sciences and technology</subject><subject>Structural analysis. Stresses</subject><subject>TECHNICAL NOTES</subject><issn>0887-3801</issn><issn>1943-5487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEUhonRxFp9BzY2djHKbYAxcdE09ZJ4S9Q1YRimotNBgcb07WVSoztX5198nJ_zATDB6BQjjs9OZk_zxRRJKQoqET4hCJVTXJ2TnOR0B4xwxWhRMil2wegX2wcHMb4hhAgXbAT09aYOroF3vrFdhL6F93YddJdH-vLhPULdN_DK9jY5A2fd0geXXlcRtj7Ax2AbZ5Lrl0Ps3Mr1Omzg3McEFzG5lU42HoK9VnfRHv3MMXi5XDzPr4vbh6ub-ey20FRUqWDMcEwxrTjHpWGa1Bo1iBFCBa112TJqNRGcENSUSNS0FK1AQopalpXRLaZjMNnu_Qj-c21jUisXje063Vu_jorIkmMpaQYvtqAJPsZgW_UR8lfDRmGkBrNKDWbVoEwNytRgVuFKkZxkfn_8U6Sj0V0bdG9c_FvCOSOYscxVWy5jVr35dejz_b8l_3Z8A_WdinM</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Kim, G. H</creator><creator>Seo, D. S</creator><creator>Kang, K. I</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050401</creationdate><title>Hybrid Models of Neural Networks and Genetic Algorithms for Predicting Preliminary Cost Estimates</title><author>Kim, G. H ; Seo, D. S ; Kang, K. I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-44c6131396615c4a2ba0d0422373ba5f43ea276220d507b357f70787b859caf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Building economics. Cost</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Exact sciences and technology</topic><topic>Structural analysis. Stresses</topic><topic>TECHNICAL NOTES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, G. H</creatorcontrib><creatorcontrib>Seo, D. S</creatorcontrib><creatorcontrib>Kang, K. I</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computing in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, G. H</au><au>Seo, D. S</au><au>Kang, K. I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Models of Neural Networks and Genetic Algorithms for Predicting Preliminary Cost Estimates</atitle><jtitle>Journal of computing in civil engineering</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>19</volume><issue>2</issue><spage>208</spage><epage>211</epage><pages>208-211</pages><issn>0887-3801</issn><eissn>1943-5487</eissn><coden>JCCEE5</coden><abstract>This technical note applies hybrid models of neural networks (NN) and genetic algorithms (GA) to cost estimation of residential buildings to predict preliminary cost estimates. Data used in the study are for residential buildings constructed from 1997 to 2000 in Seoul, Korea. These are used in training each model and evaluating its performance. The models applied were Model I, which determines each parameter of a back-propagation network by a trial-and-error process; Model II, which determines each parameter of a back-propagation network by GAs; and Model III, which trains weights of NNs using genetic algorithms. The research revealed that optimizing each parameter of back-propagation networks using GAs is most effective in estimating the preliminary costs of residential buildings. Therefore, GAs may help estimators overcome the problem of the lack of adequate rules for determining the parameters of NNs.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0887-3801(2005)19:2(208)</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-3801
ispartof Journal of computing in civil engineering, 2005-04, Vol.19 (2), p.208-211
issn 0887-3801
1943-5487
language eng
recordid cdi_proquest_miscellaneous_28561883
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Applied sciences
Building economics. Cost
Buildings. Public works
Computation methods. Tables. Charts
Exact sciences and technology
Structural analysis. Stresses
TECHNICAL NOTES
title Hybrid Models of Neural Networks and Genetic Algorithms for Predicting Preliminary Cost Estimates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Models%20of%20Neural%20Networks%20and%20Genetic%20Algorithms%20for%20Predicting%20Preliminary%20Cost%20Estimates&rft.jtitle=Journal%20of%20computing%20in%20civil%20engineering&rft.au=Kim,%20G.%20H&rft.date=2005-04-01&rft.volume=19&rft.issue=2&rft.spage=208&rft.epage=211&rft.pages=208-211&rft.issn=0887-3801&rft.eissn=1943-5487&rft.coden=JCCEE5&rft_id=info:doi/10.1061/(ASCE)0887-3801(2005)19:2(208)&rft_dat=%3Cproquest_cross%3E28561883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28561883&rft_id=info:pmid/&rfr_iscdi=true