Methane reforming kinetics within a Ni–YSZ SOFC anode support
This paper reports experimental and modeling investigations of thermal methane reforming chemistry within porous Ni–YSZ anode materials. Because the reforming chemistry is difficult to observe directly in an operating fuel cell, a specially designed experiment is developed. In the experiment a 0.75 ...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. A, General General, 2005-10, Vol.295 (1), p.40-51 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1 |
container_start_page | 40 |
container_title | Applied catalysis. A, General |
container_volume | 295 |
creator | Hecht, Ethan S. Gupta, Gaurav K. Zhu, Huayang Dean, Anthony M. Kee, Robert J. Maier, Luba Deutschmann, Olaf |
description | This paper reports experimental and modeling investigations of thermal methane reforming chemistry within porous Ni–YSZ anode materials. Because the reforming chemistry is difficult to observe directly in an operating fuel cell, a specially designed experiment is developed. In the experiment a 0.75 mm-thick anode is sandwiched between two small co-flowing gas channels. One channel represents the fuel channel of a solid-oxide fuel cell (SOFC). The composition in the other channel carries the species that would be produced in an operating fuel cell by the electrochemical charge-transfer reactions in the thin three-phase regions near the interface between the anode and the dense electrolyte membrane (i.e., H
2O and CO
2). Because the anode structure is porous (and there is no dense electrolyte or cathode applied), there is convective and diffusive species flux between the two flow channels. The entire assembly is maintained at approximately 800
°
C in a furnace. The results of heterogeneous reforming kinetics are determined by using mass spectrometry to measure the species composition at the outlet of both channels. Experimental results are interpreted using a computational model that incorporates channel gas flow, porous-media transport, and elementary heterogeneous chemical kinetics. The overall objective is to develop quantitative models of non-electrochemical heterogeneous reforming chemistry within a Ni–YSZ anode. |
doi_str_mv | 10.1016/j.apcata.2005.08.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28559601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926860X05005892</els_id><sourcerecordid>28559601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-8e83e3e88b1fde6215d5de5117a74991860d9530ac3acecea5bfc219e4b9bcf63</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwBwxZYEt4juPEXkCoooBUYChIwGI5zgt1aZNgpyA2_oE_5EtIlUpsTG-59757DyGHFCIKND2ZR7oxutVRDMAjEBEA2yIDKjIWMpHxbTIAGaehSOFxl-x5PweAOJF8QM5usJ3pCgOHZe2WtnoJXm2FrTU--LDtzFaBDm7tz9f30_Q5mN6NR4Gu6gIDv2qa2rX7ZKfUC48HmzskD-OL-9FVOLm7vB6dT0KTMNaGAgVDhkLktCwwjSkveIGc0kxniZS0a1ZIzkAbpg0a1DwvTUwlJrnMTZmyITnucxtXv63Qt2ppvcHFouter7yKBecyBdoJk15oXO19t0o1zi61-1QU1JqWmquellrTUiBUR6uzHW3ytTd6UTpdGev_vFlMY5lApzvtddiNfbfolDcWK4OFdWhaVdT2_0e_w-iCfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28559601</pqid></control><display><type>article</type><title>Methane reforming kinetics within a Ni–YSZ SOFC anode support</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hecht, Ethan S. ; Gupta, Gaurav K. ; Zhu, Huayang ; Dean, Anthony M. ; Kee, Robert J. ; Maier, Luba ; Deutschmann, Olaf</creator><creatorcontrib>Hecht, Ethan S. ; Gupta, Gaurav K. ; Zhu, Huayang ; Dean, Anthony M. ; Kee, Robert J. ; Maier, Luba ; Deutschmann, Olaf</creatorcontrib><description>This paper reports experimental and modeling investigations of thermal methane reforming chemistry within porous Ni–YSZ anode materials. Because the reforming chemistry is difficult to observe directly in an operating fuel cell, a specially designed experiment is developed. In the experiment a 0.75 mm-thick anode is sandwiched between two small co-flowing gas channels. One channel represents the fuel channel of a solid-oxide fuel cell (SOFC). The composition in the other channel carries the species that would be produced in an operating fuel cell by the electrochemical charge-transfer reactions in the thin three-phase regions near the interface between the anode and the dense electrolyte membrane (i.e., H
2O and CO
2). Because the anode structure is porous (and there is no dense electrolyte or cathode applied), there is convective and diffusive species flux between the two flow channels. The entire assembly is maintained at approximately 800
°
C in a furnace. The results of heterogeneous reforming kinetics are determined by using mass spectrometry to measure the species composition at the outlet of both channels. Experimental results are interpreted using a computational model that incorporates channel gas flow, porous-media transport, and elementary heterogeneous chemical kinetics. The overall objective is to develop quantitative models of non-electrochemical heterogeneous reforming chemistry within a Ni–YSZ anode.</description><identifier>ISSN: 0926-860X</identifier><identifier>EISSN: 1873-3875</identifier><identifier>DOI: 10.1016/j.apcata.2005.08.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Catalysis ; Chemistry ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; General and physical chemistry ; Heterogeneous kinetics ; Methane reforming ; Reaction mechanism ; Solid-oxide fuel cell ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Applied catalysis. A, General, 2005-10, Vol.295 (1), p.40-51</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-8e83e3e88b1fde6215d5de5117a74991860d9530ac3acecea5bfc219e4b9bcf63</citedby><cites>FETCH-LOGICAL-c433t-8e83e3e88b1fde6215d5de5117a74991860d9530ac3acecea5bfc219e4b9bcf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcata.2005.08.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17212940$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hecht, Ethan S.</creatorcontrib><creatorcontrib>Gupta, Gaurav K.</creatorcontrib><creatorcontrib>Zhu, Huayang</creatorcontrib><creatorcontrib>Dean, Anthony M.</creatorcontrib><creatorcontrib>Kee, Robert J.</creatorcontrib><creatorcontrib>Maier, Luba</creatorcontrib><creatorcontrib>Deutschmann, Olaf</creatorcontrib><title>Methane reforming kinetics within a Ni–YSZ SOFC anode support</title><title>Applied catalysis. A, General</title><description>This paper reports experimental and modeling investigations of thermal methane reforming chemistry within porous Ni–YSZ anode materials. Because the reforming chemistry is difficult to observe directly in an operating fuel cell, a specially designed experiment is developed. In the experiment a 0.75 mm-thick anode is sandwiched between two small co-flowing gas channels. One channel represents the fuel channel of a solid-oxide fuel cell (SOFC). The composition in the other channel carries the species that would be produced in an operating fuel cell by the electrochemical charge-transfer reactions in the thin three-phase regions near the interface between the anode and the dense electrolyte membrane (i.e., H
2O and CO
2). Because the anode structure is porous (and there is no dense electrolyte or cathode applied), there is convective and diffusive species flux between the two flow channels. The entire assembly is maintained at approximately 800
°
C in a furnace. The results of heterogeneous reforming kinetics are determined by using mass spectrometry to measure the species composition at the outlet of both channels. Experimental results are interpreted using a computational model that incorporates channel gas flow, porous-media transport, and elementary heterogeneous chemical kinetics. The overall objective is to develop quantitative models of non-electrochemical heterogeneous reforming chemistry within a Ni–YSZ anode.</description><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Heterogeneous kinetics</subject><subject>Methane reforming</subject><subject>Reaction mechanism</subject><subject>Solid-oxide fuel cell</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0926-860X</issn><issn>1873-3875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwBwxZYEt4juPEXkCoooBUYChIwGI5zgt1aZNgpyA2_oE_5EtIlUpsTG-59757DyGHFCIKND2ZR7oxutVRDMAjEBEA2yIDKjIWMpHxbTIAGaehSOFxl-x5PweAOJF8QM5usJ3pCgOHZe2WtnoJXm2FrTU--LDtzFaBDm7tz9f30_Q5mN6NR4Gu6gIDv2qa2rX7ZKfUC48HmzskD-OL-9FVOLm7vB6dT0KTMNaGAgVDhkLktCwwjSkveIGc0kxniZS0a1ZIzkAbpg0a1DwvTUwlJrnMTZmyITnucxtXv63Qt2ppvcHFouter7yKBecyBdoJk15oXO19t0o1zi61-1QU1JqWmquellrTUiBUR6uzHW3ytTd6UTpdGev_vFlMY5lApzvtddiNfbfolDcWK4OFdWhaVdT2_0e_w-iCfg</recordid><startdate>20051013</startdate><enddate>20051013</enddate><creator>Hecht, Ethan S.</creator><creator>Gupta, Gaurav K.</creator><creator>Zhu, Huayang</creator><creator>Dean, Anthony M.</creator><creator>Kee, Robert J.</creator><creator>Maier, Luba</creator><creator>Deutschmann, Olaf</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20051013</creationdate><title>Methane reforming kinetics within a Ni–YSZ SOFC anode support</title><author>Hecht, Ethan S. ; Gupta, Gaurav K. ; Zhu, Huayang ; Dean, Anthony M. ; Kee, Robert J. ; Maier, Luba ; Deutschmann, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-8e83e3e88b1fde6215d5de5117a74991860d9530ac3acecea5bfc219e4b9bcf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Heterogeneous kinetics</topic><topic>Methane reforming</topic><topic>Reaction mechanism</topic><topic>Solid-oxide fuel cell</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hecht, Ethan S.</creatorcontrib><creatorcontrib>Gupta, Gaurav K.</creatorcontrib><creatorcontrib>Zhu, Huayang</creatorcontrib><creatorcontrib>Dean, Anthony M.</creatorcontrib><creatorcontrib>Kee, Robert J.</creatorcontrib><creatorcontrib>Maier, Luba</creatorcontrib><creatorcontrib>Deutschmann, Olaf</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied catalysis. A, General</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hecht, Ethan S.</au><au>Gupta, Gaurav K.</au><au>Zhu, Huayang</au><au>Dean, Anthony M.</au><au>Kee, Robert J.</au><au>Maier, Luba</au><au>Deutschmann, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methane reforming kinetics within a Ni–YSZ SOFC anode support</atitle><jtitle>Applied catalysis. A, General</jtitle><date>2005-10-13</date><risdate>2005</risdate><volume>295</volume><issue>1</issue><spage>40</spage><epage>51</epage><pages>40-51</pages><issn>0926-860X</issn><eissn>1873-3875</eissn><abstract>This paper reports experimental and modeling investigations of thermal methane reforming chemistry within porous Ni–YSZ anode materials. Because the reforming chemistry is difficult to observe directly in an operating fuel cell, a specially designed experiment is developed. In the experiment a 0.75 mm-thick anode is sandwiched between two small co-flowing gas channels. One channel represents the fuel channel of a solid-oxide fuel cell (SOFC). The composition in the other channel carries the species that would be produced in an operating fuel cell by the electrochemical charge-transfer reactions in the thin three-phase regions near the interface between the anode and the dense electrolyte membrane (i.e., H
2O and CO
2). Because the anode structure is porous (and there is no dense electrolyte or cathode applied), there is convective and diffusive species flux between the two flow channels. The entire assembly is maintained at approximately 800
°
C in a furnace. The results of heterogeneous reforming kinetics are determined by using mass spectrometry to measure the species composition at the outlet of both channels. Experimental results are interpreted using a computational model that incorporates channel gas flow, porous-media transport, and elementary heterogeneous chemical kinetics. The overall objective is to develop quantitative models of non-electrochemical heterogeneous reforming chemistry within a Ni–YSZ anode.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcata.2005.08.003</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-860X |
ispartof | Applied catalysis. A, General, 2005-10, Vol.295 (1), p.40-51 |
issn | 0926-860X 1873-3875 |
language | eng |
recordid | cdi_proquest_miscellaneous_28559601 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Catalysis Chemistry Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells General and physical chemistry Heterogeneous kinetics Methane reforming Reaction mechanism Solid-oxide fuel cell Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Methane reforming kinetics within a Ni–YSZ SOFC anode support |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methane%20reforming%20kinetics%20within%20a%20Ni%E2%80%93YSZ%20SOFC%20anode%20support&rft.jtitle=Applied%20catalysis.%20A,%20General&rft.au=Hecht,%20Ethan%20S.&rft.date=2005-10-13&rft.volume=295&rft.issue=1&rft.spage=40&rft.epage=51&rft.pages=40-51&rft.issn=0926-860X&rft.eissn=1873-3875&rft_id=info:doi/10.1016/j.apcata.2005.08.003&rft_dat=%3Cproquest_cross%3E28559601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28559601&rft_id=info:pmid/&rft_els_id=S0926860X05005892&rfr_iscdi=true |