Rational vertex operator algebras and the effective central charge
We establish that the Lie algebra of weight 1 states in a (strongly) rational vertex operator algebra is reductive, and that its Lie rank 1 is bounded above by the effective central charge c˜. We show that lattice vertex operator algebras may be characterized by the equalities c˜=l=c, and in particu...
Gespeichert in:
Veröffentlicht in: | International Mathematics Research Notices 2004, Vol.2004 (56), p.2989-3008 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3008 |
---|---|
container_issue | 56 |
container_start_page | 2989 |
container_title | International Mathematics Research Notices |
container_volume | 2004 |
creator | Dong, Chongying Mason, Geoffrey |
description | We establish that the Lie algebra of weight 1 states in a (strongly) rational vertex operator algebra is reductive, and that its Lie rank 1 is bounded above by the effective central charge c˜. We show that lattice vertex operator algebras may be characterized by the equalities c˜=l=c, and in particular holomorphic lattice theories may be characterized among all holomorphic vertex operator algebras by the equality l = c. |
doi_str_mv | 10.1155/S1073792804140968 |
format | Article |
fullrecord | <record><control><sourceid>proquest_oup_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_28552097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1155/S1073792804140968</oup_id><sourcerecordid>28552097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4228942b1259b4e216483e5ccc70aa40d7ca1394f3abc4841be519df483f780e3</originalsourceid><addsrcrecordid>eNplkD1PwzAURS0EEqXwA9gyMRHwc-zYHgFRiqhAKh9CLJbjvrSBNAm2W8G_J1URC9O70j33DYeQY6BnAEKcPwKVmdRMUQ6c6lztkAHkSqYAWu72ua_TTb9PDkJ4p5RJTWFALqc2Vm1j62SNPuJX0nbobWx9Yus5Ft6GxDazJC4wwbJEF6s1Jg6b6PuJW1g_x0OyV9o64NHvHZLn0fXT1TidPNzcXl1MUpdJEVPOmNKcFcCELjgyyLnKUDjnJLWW05l0FjLNy8wWjisOBQrQs7KnSqkoZkNysv3b-fZzhSGaZRUc1rVtsF0Fw5QQjGrZg6dbsF11pvPV0vpvA9RsRJl_ono83eJV6AX8Daz_MHmPCjN-fTMvcDcZ34-mRmQ_x09pdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28552097</pqid></control><display><type>article</type><title>Rational vertex operator algebras and the effective central charge</title><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>Oxford Journals</source><creator>Dong, Chongying ; Mason, Geoffrey</creator><creatorcontrib>Dong, Chongying ; Mason, Geoffrey</creatorcontrib><description>We establish that the Lie algebra of weight 1 states in a (strongly) rational vertex operator algebra is reductive, and that its Lie rank 1 is bounded above by the effective central charge c˜. We show that lattice vertex operator algebras may be characterized by the equalities c˜=l=c, and in particular holomorphic lattice theories may be characterized among all holomorphic vertex operator algebras by the equality l = c.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-1197</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1155/S1073792804140968</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>International Mathematics Research Notices, 2004, Vol.2004 (56), p.2989-3008</ispartof><rights>Copyright © 2004 Hindawi Publishing Corporation. All rights reserved. 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4228942b1259b4e216483e5ccc70aa40d7ca1394f3abc4841be519df483f780e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Dong, Chongying</creatorcontrib><creatorcontrib>Mason, Geoffrey</creatorcontrib><title>Rational vertex operator algebras and the effective central charge</title><title>International Mathematics Research Notices</title><description>We establish that the Lie algebra of weight 1 states in a (strongly) rational vertex operator algebra is reductive, and that its Lie rank 1 is bounded above by the effective central charge c˜. We show that lattice vertex operator algebras may be characterized by the equalities c˜=l=c, and in particular holomorphic lattice theories may be characterized among all holomorphic vertex operator algebras by the equality l = c.</description><issn>1073-7928</issn><issn>1687-1197</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNplkD1PwzAURS0EEqXwA9gyMRHwc-zYHgFRiqhAKh9CLJbjvrSBNAm2W8G_J1URC9O70j33DYeQY6BnAEKcPwKVmdRMUQ6c6lztkAHkSqYAWu72ua_TTb9PDkJ4p5RJTWFALqc2Vm1j62SNPuJX0nbobWx9Yus5Ft6GxDazJC4wwbJEF6s1Jg6b6PuJW1g_x0OyV9o64NHvHZLn0fXT1TidPNzcXl1MUpdJEVPOmNKcFcCELjgyyLnKUDjnJLWW05l0FjLNy8wWjisOBQrQs7KnSqkoZkNysv3b-fZzhSGaZRUc1rVtsF0Fw5QQjGrZg6dbsF11pvPV0vpvA9RsRJl_ono83eJV6AX8Daz_MHmPCjN-fTMvcDcZ34-mRmQ_x09pdg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Dong, Chongying</creator><creator>Mason, Geoffrey</creator><general>Hindawi Publishing Corporation</general><scope>BSCLL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2004</creationdate><title>Rational vertex operator algebras and the effective central charge</title><author>Dong, Chongying ; Mason, Geoffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4228942b1259b4e216483e5ccc70aa40d7ca1394f3abc4841be519df483f780e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Chongying</creatorcontrib><creatorcontrib>Mason, Geoffrey</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Mathematics Research Notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Chongying</au><au>Mason, Geoffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational vertex operator algebras and the effective central charge</atitle><jtitle>International Mathematics Research Notices</jtitle><date>2004</date><risdate>2004</risdate><volume>2004</volume><issue>56</issue><spage>2989</spage><epage>3008</epage><pages>2989-3008</pages><issn>1073-7928</issn><eissn>1687-1197</eissn><eissn>1687-0247</eissn><abstract>We establish that the Lie algebra of weight 1 states in a (strongly) rational vertex operator algebra is reductive, and that its Lie rank 1 is bounded above by the effective central charge c˜. We show that lattice vertex operator algebras may be characterized by the equalities c˜=l=c, and in particular holomorphic lattice theories may be characterized among all holomorphic vertex operator algebras by the equality l = c.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/S1073792804140968</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International Mathematics Research Notices, 2004, Vol.2004 (56), p.2989-3008 |
issn | 1073-7928 1687-1197 1687-0247 |
language | eng |
recordid | cdi_proquest_miscellaneous_28552097 |
source | Alma/SFX Local Collection; EZB Electronic Journals Library; Oxford Journals |
title | Rational vertex operator algebras and the effective central charge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_oup_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20vertex%20operator%20algebras%20and%20the%20effective%20central%20charge&rft.jtitle=International%20Mathematics%20Research%20Notices&rft.au=Dong,%20Chongying&rft.date=2004&rft.volume=2004&rft.issue=56&rft.spage=2989&rft.epage=3008&rft.pages=2989-3008&rft.issn=1073-7928&rft.eissn=1687-1197&rft_id=info:doi/10.1155/S1073792804140968&rft_dat=%3Cproquest_oup_p%3E28552097%3C/proquest_oup_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28552097&rft_id=info:pmid/&rft_oup_id=10.1155/S1073792804140968&rfr_iscdi=true |