Resonant sum-frequency generation

A theoretical and numerical analysis of doubly or singly resonant sum-frequency generation of two laser beams in an external cavity is presented. The plane-wave equations for three-wave mixing-as applied to Gaussian beams using a Boyd-Kleinman overlap integral-are found to give excellent agreement w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2002-01, Vol.38 (1), p.12-18
1. Verfasser: Moore, G.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 12
container_title IEEE journal of quantum electronics
container_volume 38
creator Moore, G.T.
description A theoretical and numerical analysis of doubly or singly resonant sum-frequency generation of two laser beams in an external cavity is presented. The plane-wave equations for three-wave mixing-as applied to Gaussian beams using a Boyd-Kleinman overlap integral-are found to give excellent agreement with 3-D numerical simulations. In many regimes of practical interest, the present theory is also in excellent agreement with earlier work of Kaneda and Kubota. In particular, the generation of 589-nm CW sodium-resonance radiation in lithium triborate using two Nd:YAG lasers is considered. Matching the photon flux of the two laser beams is generally optimal. A suitable choice of input-coupler reflectivities (decreasing as the flux level increases) results in high-efficiency conversion with acceptable tolerance to input flux imbalance.
doi_str_mv 10.1109/3.973314
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28551318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>973314</ieee_id><sourcerecordid>2431048011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-93722d265b5b1137bc0428ed87b5283d602066ae705ac0c72142e62495173c683</originalsourceid><addsrcrecordid>eNqN0E1LAzEQBuAgCtYqePZUBcXL1ky-c5TiFxQE0XPIprOyZZutyfbQf--WFhUP4mkY5uFlZgg5BToGoPaGj63mHMQeGYCUpgANfJ8MKAVTWLD6kBzlPO9bIQwdkPMXzG30sRvl1aKoEn6sMIb16B0jJt_VbTwmB5VvMp7s6pC83d-9Th6L6fPD0-R2WgRuVVdYrhmbMSVLWQJwXQYqmMGZ0aVkhs8UZVQpj5pKH2jQDARDxYSVoHlQhg_J1TZ3mdp-idy5RZ0DNo2P2K6yY0ZK4PAPqJU22rAeXv8JQWlgxmple3rxi87bVYr9vc4YIawwP_NCanNOWLllqhc-rR1Qt3m-4277_J5e7vJ8Dr6pko-hzt-ec8uk2rizrasR8Wu8C_kEaMiHKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884494882</pqid></control><display><type>article</type><title>Resonant sum-frequency generation</title><source>IEEE Electronic Library (IEL)</source><creator>Moore, G.T.</creator><creatorcontrib>Moore, G.T.</creatorcontrib><description>A theoretical and numerical analysis of doubly or singly resonant sum-frequency generation of two laser beams in an external cavity is presented. The plane-wave equations for three-wave mixing-as applied to Gaussian beams using a Boyd-Kleinman overlap integral-are found to give excellent agreement with 3-D numerical simulations. In many regimes of practical interest, the present theory is also in excellent agreement with earlier work of Kaneda and Kubota. In particular, the generation of 589-nm CW sodium-resonance radiation in lithium triborate using two Nd:YAG lasers is considered. Matching the photon flux of the two laser beams is generally optimal. A suitable choice of input-coupler reflectivities (decreasing as the flux level increases) results in high-efficiency conversion with acceptable tolerance to input flux imbalance.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/3.973314</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Computer simulation ; Exact sciences and technology ; Flux ; Frequency conversion ; Frequency conversion ; harmonic generation, including high-order harmonic generation ; Fundamental areas of phenomenology (including applications) ; Harmonic generation, frequency conversion ; Integral equations ; Laser beams ; Laser excitation ; Laser theory ; Lithium ; Matching ; Mathematical analysis ; Nonlinear optics ; Numerical analysis ; Numerical simulation ; Optical mixing ; Optical resonators ; Optics ; Phase conjugation, optical mixing, and photorefractive effect ; Phase conjugation, optical mixing; photorefractive and kerr effects ; Photons ; Physics ; Pump lasers ; Resonance</subject><ispartof>IEEE journal of quantum electronics, 2002-01, Vol.38 (1), p.12-18</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-93722d265b5b1137bc0428ed87b5283d602066ae705ac0c72142e62495173c683</citedby><cites>FETCH-LOGICAL-c396t-93722d265b5b1137bc0428ed87b5283d602066ae705ac0c72142e62495173c683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/973314$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/973314$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13392564$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, G.T.</creatorcontrib><title>Resonant sum-frequency generation</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>A theoretical and numerical analysis of doubly or singly resonant sum-frequency generation of two laser beams in an external cavity is presented. The plane-wave equations for three-wave mixing-as applied to Gaussian beams using a Boyd-Kleinman overlap integral-are found to give excellent agreement with 3-D numerical simulations. In many regimes of practical interest, the present theory is also in excellent agreement with earlier work of Kaneda and Kubota. In particular, the generation of 589-nm CW sodium-resonance radiation in lithium triborate using two Nd:YAG lasers is considered. Matching the photon flux of the two laser beams is generally optimal. A suitable choice of input-coupler reflectivities (decreasing as the flux level increases) results in high-efficiency conversion with acceptable tolerance to input flux imbalance.</description><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Frequency conversion</subject><subject>Frequency conversion ; harmonic generation, including high-order harmonic generation</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Harmonic generation, frequency conversion</subject><subject>Integral equations</subject><subject>Laser beams</subject><subject>Laser excitation</subject><subject>Laser theory</subject><subject>Lithium</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Nonlinear optics</subject><subject>Numerical analysis</subject><subject>Numerical simulation</subject><subject>Optical mixing</subject><subject>Optical resonators</subject><subject>Optics</subject><subject>Phase conjugation, optical mixing, and photorefractive effect</subject><subject>Phase conjugation, optical mixing; photorefractive and kerr effects</subject><subject>Photons</subject><subject>Physics</subject><subject>Pump lasers</subject><subject>Resonance</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0E1LAzEQBuAgCtYqePZUBcXL1ky-c5TiFxQE0XPIprOyZZutyfbQf--WFhUP4mkY5uFlZgg5BToGoPaGj63mHMQeGYCUpgANfJ8MKAVTWLD6kBzlPO9bIQwdkPMXzG30sRvl1aKoEn6sMIb16B0jJt_VbTwmB5VvMp7s6pC83d-9Th6L6fPD0-R2WgRuVVdYrhmbMSVLWQJwXQYqmMGZ0aVkhs8UZVQpj5pKH2jQDARDxYSVoHlQhg_J1TZ3mdp-idy5RZ0DNo2P2K6yY0ZK4PAPqJU22rAeXv8JQWlgxmple3rxi87bVYr9vc4YIawwP_NCanNOWLllqhc-rR1Qt3m-4277_J5e7vJ8Dr6pko-hzt-ec8uk2rizrasR8Wu8C_kEaMiHKQ</recordid><startdate>200201</startdate><enddate>200201</enddate><creator>Moore, G.T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>200201</creationdate><title>Resonant sum-frequency generation</title><author>Moore, G.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-93722d265b5b1137bc0428ed87b5283d602066ae705ac0c72142e62495173c683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Frequency conversion</topic><topic>Frequency conversion ; harmonic generation, including high-order harmonic generation</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Harmonic generation, frequency conversion</topic><topic>Integral equations</topic><topic>Laser beams</topic><topic>Laser excitation</topic><topic>Laser theory</topic><topic>Lithium</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Nonlinear optics</topic><topic>Numerical analysis</topic><topic>Numerical simulation</topic><topic>Optical mixing</topic><topic>Optical resonators</topic><topic>Optics</topic><topic>Phase conjugation, optical mixing, and photorefractive effect</topic><topic>Phase conjugation, optical mixing; photorefractive and kerr effects</topic><topic>Photons</topic><topic>Physics</topic><topic>Pump lasers</topic><topic>Resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, G.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moore, G.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant sum-frequency generation</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2002-01</date><risdate>2002</risdate><volume>38</volume><issue>1</issue><spage>12</spage><epage>18</epage><pages>12-18</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>A theoretical and numerical analysis of doubly or singly resonant sum-frequency generation of two laser beams in an external cavity is presented. The plane-wave equations for three-wave mixing-as applied to Gaussian beams using a Boyd-Kleinman overlap integral-are found to give excellent agreement with 3-D numerical simulations. In many regimes of practical interest, the present theory is also in excellent agreement with earlier work of Kaneda and Kubota. In particular, the generation of 589-nm CW sodium-resonance radiation in lithium triborate using two Nd:YAG lasers is considered. Matching the photon flux of the two laser beams is generally optimal. A suitable choice of input-coupler reflectivities (decreasing as the flux level increases) results in high-efficiency conversion with acceptable tolerance to input flux imbalance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/3.973314</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2002-01, Vol.38 (1), p.12-18
issn 0018-9197
1558-1713
language eng
recordid cdi_proquest_miscellaneous_28551318
source IEEE Electronic Library (IEL)
subjects Computer simulation
Exact sciences and technology
Flux
Frequency conversion
Frequency conversion
harmonic generation, including high-order harmonic generation
Fundamental areas of phenomenology (including applications)
Harmonic generation, frequency conversion
Integral equations
Laser beams
Laser excitation
Laser theory
Lithium
Matching
Mathematical analysis
Nonlinear optics
Numerical analysis
Numerical simulation
Optical mixing
Optical resonators
Optics
Phase conjugation, optical mixing, and photorefractive effect
Phase conjugation, optical mixing
photorefractive and kerr effects
Photons
Physics
Pump lasers
Resonance
title Resonant sum-frequency generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20sum-frequency%20generation&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Moore,%20G.T.&rft.date=2002-01&rft.volume=38&rft.issue=1&rft.spage=12&rft.epage=18&rft.pages=12-18&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/3.973314&rft_dat=%3Cproquest_RIE%3E2431048011%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884494882&rft_id=info:pmid/&rft_ieee_id=973314&rfr_iscdi=true