A layered model for non-thermal radio emission from single O stars

We present a model for the non-thermal radio emission from bright O stars, in terms of synchrotron emission from wind-embedded shocks. The model is an extension of an earlier one, with an improved treatment of the cooling of relativistic electrons. This improvement limits the synchrotron-emitting vo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2005-04, Vol.433 (1), p.313-322
Hauptverfasser: Van Loo, S., Runacres, M. C., Blomme, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 322
container_issue 1
container_start_page 313
container_title Astronomy and astrophysics (Berlin)
container_volume 433
creator Van Loo, S.
Runacres, M. C.
Blomme, R.
description We present a model for the non-thermal radio emission from bright O stars, in terms of synchrotron emission from wind-embedded shocks. The model is an extension of an earlier one, with an improved treatment of the cooling of relativistic electrons. This improvement limits the synchrotron-emitting volume to a series of fairly narrow layers behind the shocks. We show that the width of these layers increases with increasing wavelength, which has important consequences for the shape of the spectrum. We also show that the strongest shocks produce the bulk of the emission, so that the emergent radio flux can be adequately described as coming from a small number of shocks, or even from a single shock.
A single shock model is completely determined by four parameters: the position of the shock, the compression ratio and velocity jump of the shock, and the surface magnetic field. Applying a single shock model to the O5 If star Cyg OB2 No. 9 allows a good determination of the compression ratio and shock position and, to a lesser extent, the magnetic field and velocity jump.
Our main conclusion is that strong shocks need to survive out to distances of a few hundred stellar radii. Even with multiple shocks, the shocks needed to explain the observed emission are stronger than predictions from time-dependent hydrodynamical simulations.
doi_str_mv 10.1051/0004-6361:20041973
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28549397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17329374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-5d3fc6449d659931d901d1ff12d46907a94ce3aabdc002bf01f5c292f70264273</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujiYj-AU-96G21X9tSb0IUTIhEg_HYlH7oaneL7ZLIv3cJiEdPM5N53sk7LwDnGF1hVOJrhBArOOX4hnQdloIegB5mlBRIMH4IenvgGJzk_NGNBA9oDwxvYdBrl5yFdbQuQB8TbGJTtO8u1TrApG0VoaurnKvYQJ9iDXPVvAUHZzC3OuVTcOR1yO5sV_vg5f5uPpoU09n4YXQ7LQwjuC1KS73hjEnLSykpthJhi73HxDIukdCSGUe1XljTmVt4hH1piCReIMIZEbQPLrd3lyl-rVxuVWfKuBB04-IqKzIomaTyfxALSiQVrAPJFjQp5pycV8tU1TqtFUZqk6vaxKY2sanfXDvRxe66zkYHn3Rjqvyn7L4jouQdV2y5Krfue7_X6VNxQUWpBuhVTeaPj8NnOVZP9AcD5oT3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17329374</pqid></control><display><type>article</type><title>A layered model for non-thermal radio emission from single O stars</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><creator>Van Loo, S. ; Runacres, M. C. ; Blomme, R.</creator><creatorcontrib>Van Loo, S. ; Runacres, M. C. ; Blomme, R.</creatorcontrib><description>We present a model for the non-thermal radio emission from bright O stars, in terms of synchrotron emission from wind-embedded shocks. The model is an extension of an earlier one, with an improved treatment of the cooling of relativistic electrons. This improvement limits the synchrotron-emitting volume to a series of fairly narrow layers behind the shocks. We show that the width of these layers increases with increasing wavelength, which has important consequences for the shape of the spectrum. We also show that the strongest shocks produce the bulk of the emission, so that the emergent radio flux can be adequately described as coming from a small number of shocks, or even from a single shock.
A single shock model is completely determined by four parameters: the position of the shock, the compression ratio and velocity jump of the shock, and the surface magnetic field. Applying a single shock model to the O5 If star Cyg OB2 No. 9 allows a good determination of the compression ratio and shock position and, to a lesser extent, the magnetic field and velocity jump.
Our main conclusion is that strong shocks need to survive out to distances of a few hundred stellar radii. Even with multiple shocks, the shocks needed to explain the observed emission are stronger than predictions from time-dependent hydrodynamical simulations.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361:20041973</identifier><identifier>CODEN: AAEJAF</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>outflows ; radiation mechanisms: non-thermal ; radio continuum: stars ; stars: early-type ; stars: mass-loss ; stars: winds</subject><ispartof>Astronomy and astrophysics (Berlin), 2005-04, Vol.433 (1), p.313-322</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-5d3fc6449d659931d901d1ff12d46907a94ce3aabdc002bf01f5c292f70264273</citedby><cites>FETCH-LOGICAL-c421t-5d3fc6449d659931d901d1ff12d46907a94ce3aabdc002bf01f5c292f70264273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3714,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16592756$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Loo, S.</creatorcontrib><creatorcontrib>Runacres, M. C.</creatorcontrib><creatorcontrib>Blomme, R.</creatorcontrib><title>A layered model for non-thermal radio emission from single O stars</title><title>Astronomy and astrophysics (Berlin)</title><description>We present a model for the non-thermal radio emission from bright O stars, in terms of synchrotron emission from wind-embedded shocks. The model is an extension of an earlier one, with an improved treatment of the cooling of relativistic electrons. This improvement limits the synchrotron-emitting volume to a series of fairly narrow layers behind the shocks. We show that the width of these layers increases with increasing wavelength, which has important consequences for the shape of the spectrum. We also show that the strongest shocks produce the bulk of the emission, so that the emergent radio flux can be adequately described as coming from a small number of shocks, or even from a single shock.
A single shock model is completely determined by four parameters: the position of the shock, the compression ratio and velocity jump of the shock, and the surface magnetic field. Applying a single shock model to the O5 If star Cyg OB2 No. 9 allows a good determination of the compression ratio and shock position and, to a lesser extent, the magnetic field and velocity jump.
Our main conclusion is that strong shocks need to survive out to distances of a few hundred stellar radii. Even with multiple shocks, the shocks needed to explain the observed emission are stronger than predictions from time-dependent hydrodynamical simulations.</description><subject>outflows</subject><subject>radiation mechanisms: non-thermal</subject><subject>radio continuum: stars</subject><subject>stars: early-type</subject><subject>stars: mass-loss</subject><subject>stars: winds</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhhujiYj-AU-96G21X9tSb0IUTIhEg_HYlH7oaneL7ZLIv3cJiEdPM5N53sk7LwDnGF1hVOJrhBArOOX4hnQdloIegB5mlBRIMH4IenvgGJzk_NGNBA9oDwxvYdBrl5yFdbQuQB8TbGJTtO8u1TrApG0VoaurnKvYQJ9iDXPVvAUHZzC3OuVTcOR1yO5sV_vg5f5uPpoU09n4YXQ7LQwjuC1KS73hjEnLSykpthJhi73HxDIukdCSGUe1XljTmVt4hH1piCReIMIZEbQPLrd3lyl-rVxuVWfKuBB04-IqKzIomaTyfxALSiQVrAPJFjQp5pycV8tU1TqtFUZqk6vaxKY2sanfXDvRxe66zkYHn3Rjqvyn7L4jouQdV2y5Krfue7_X6VNxQUWpBuhVTeaPj8NnOVZP9AcD5oT3</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Van Loo, S.</creator><creator>Runacres, M. C.</creator><creator>Blomme, R.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20050401</creationdate><title>A layered model for non-thermal radio emission from single O stars</title><author>Van Loo, S. ; Runacres, M. C. ; Blomme, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-5d3fc6449d659931d901d1ff12d46907a94ce3aabdc002bf01f5c292f70264273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>outflows</topic><topic>radiation mechanisms: non-thermal</topic><topic>radio continuum: stars</topic><topic>stars: early-type</topic><topic>stars: mass-loss</topic><topic>stars: winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Loo, S.</creatorcontrib><creatorcontrib>Runacres, M. C.</creatorcontrib><creatorcontrib>Blomme, R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Loo, S.</au><au>Runacres, M. C.</au><au>Blomme, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A layered model for non-thermal radio emission from single O stars</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>433</volume><issue>1</issue><spage>313</spage><epage>322</epage><pages>313-322</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><coden>AAEJAF</coden><abstract>We present a model for the non-thermal radio emission from bright O stars, in terms of synchrotron emission from wind-embedded shocks. The model is an extension of an earlier one, with an improved treatment of the cooling of relativistic electrons. This improvement limits the synchrotron-emitting volume to a series of fairly narrow layers behind the shocks. We show that the width of these layers increases with increasing wavelength, which has important consequences for the shape of the spectrum. We also show that the strongest shocks produce the bulk of the emission, so that the emergent radio flux can be adequately described as coming from a small number of shocks, or even from a single shock.
A single shock model is completely determined by four parameters: the position of the shock, the compression ratio and velocity jump of the shock, and the surface magnetic field. Applying a single shock model to the O5 If star Cyg OB2 No. 9 allows a good determination of the compression ratio and shock position and, to a lesser extent, the magnetic field and velocity jump.
Our main conclusion is that strong shocks need to survive out to distances of a few hundred stellar radii. Even with multiple shocks, the shocks needed to explain the observed emission are stronger than predictions from time-dependent hydrodynamical simulations.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361:20041973</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2005-04, Vol.433 (1), p.313-322
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_miscellaneous_28549397
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences
subjects outflows
radiation mechanisms: non-thermal
radio continuum: stars
stars: early-type
stars: mass-loss
stars: winds
title A layered model for non-thermal radio emission from single O stars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20layered%20model%20for%20non-thermal%20radio%20emission%20from%20single%20O%20stars&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Van%20Loo,%20S.&rft.date=2005-04-01&rft.volume=433&rft.issue=1&rft.spage=313&rft.epage=322&rft.pages=313-322&rft.issn=0004-6361&rft.eissn=1432-0746&rft.coden=AAEJAF&rft_id=info:doi/10.1051/0004-6361:20041973&rft_dat=%3Cproquest_cross%3E17329374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17329374&rft_id=info:pmid/&rfr_iscdi=true