A layered model for non-thermal radio emission from single O stars
We present a model for the non-thermal radio emission from bright O stars, in terms of synchrotron emission from wind-embedded shocks. The model is an extension of an earlier one, with an improved treatment of the cooling of relativistic electrons. This improvement limits the synchrotron-emitting vo...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2005-04, Vol.433 (1), p.313-322 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 1 |
container_start_page | 313 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 433 |
creator | Van Loo, S. Runacres, M. C. Blomme, R. |
description | We present a model for the non-thermal radio emission from bright O stars, in terms of synchrotron emission from wind-embedded shocks. The model is an extension of an earlier one, with an improved treatment of the cooling of relativistic electrons. This improvement limits the synchrotron-emitting volume to a series of fairly narrow layers behind the shocks. We show that the width of these layers increases with increasing wavelength, which has important consequences for the shape of the spectrum. We also show that the strongest shocks produce the bulk of the emission, so that the emergent radio flux can be adequately described as coming from a small number of shocks, or even from a single shock.
A single shock model is completely determined by four parameters: the position of the shock, the compression ratio and velocity jump of the shock, and the surface magnetic field. Applying a single shock model to the O5 If star Cyg OB2 No. 9 allows a good determination of the compression ratio and shock position and, to a lesser extent, the magnetic field and velocity jump.
Our main conclusion is that strong shocks need to survive out to distances of a few hundred stellar radii. Even with multiple shocks, the shocks needed to explain the observed emission are stronger than predictions from time-dependent hydrodynamical simulations. |
doi_str_mv | 10.1051/0004-6361:20041973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28549397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17329374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-5d3fc6449d659931d901d1ff12d46907a94ce3aabdc002bf01f5c292f70264273</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujiYj-AU-96G21X9tSb0IUTIhEg_HYlH7oaneL7ZLIv3cJiEdPM5N53sk7LwDnGF1hVOJrhBArOOX4hnQdloIegB5mlBRIMH4IenvgGJzk_NGNBA9oDwxvYdBrl5yFdbQuQB8TbGJTtO8u1TrApG0VoaurnKvYQJ9iDXPVvAUHZzC3OuVTcOR1yO5sV_vg5f5uPpoU09n4YXQ7LQwjuC1KS73hjEnLSykpthJhi73HxDIukdCSGUe1XljTmVt4hH1piCReIMIZEbQPLrd3lyl-rVxuVWfKuBB04-IqKzIomaTyfxALSiQVrAPJFjQp5pycV8tU1TqtFUZqk6vaxKY2sanfXDvRxe66zkYHn3Rjqvyn7L4jouQdV2y5Krfue7_X6VNxQUWpBuhVTeaPj8NnOVZP9AcD5oT3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17329374</pqid></control><display><type>article</type><title>A layered model for non-thermal radio emission from single O stars</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><creator>Van Loo, S. ; Runacres, M. C. ; Blomme, R.</creator><creatorcontrib>Van Loo, S. ; Runacres, M. C. ; Blomme, R.</creatorcontrib><description>We present a model for the non-thermal radio emission from bright O stars, in terms of synchrotron emission from wind-embedded shocks. The model is an extension of an earlier one, with an improved treatment of the cooling of relativistic electrons. This improvement limits the synchrotron-emitting volume to a series of fairly narrow layers behind the shocks. We show that the width of these layers increases with increasing wavelength, which has important consequences for the shape of the spectrum. We also show that the strongest shocks produce the bulk of the emission, so that the emergent radio flux can be adequately described as coming from a small number of shocks, or even from a single shock.
A single shock model is completely determined by four parameters: the position of the shock, the compression ratio and velocity jump of the shock, and the surface magnetic field. Applying a single shock model to the O5 If star Cyg OB2 No. 9 allows a good determination of the compression ratio and shock position and, to a lesser extent, the magnetic field and velocity jump.
Our main conclusion is that strong shocks need to survive out to distances of a few hundred stellar radii. Even with multiple shocks, the shocks needed to explain the observed emission are stronger than predictions from time-dependent hydrodynamical simulations.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361:20041973</identifier><identifier>CODEN: AAEJAF</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>outflows ; radiation mechanisms: non-thermal ; radio continuum: stars ; stars: early-type ; stars: mass-loss ; stars: winds</subject><ispartof>Astronomy and astrophysics (Berlin), 2005-04, Vol.433 (1), p.313-322</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-5d3fc6449d659931d901d1ff12d46907a94ce3aabdc002bf01f5c292f70264273</citedby><cites>FETCH-LOGICAL-c421t-5d3fc6449d659931d901d1ff12d46907a94ce3aabdc002bf01f5c292f70264273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3714,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16592756$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Loo, S.</creatorcontrib><creatorcontrib>Runacres, M. C.</creatorcontrib><creatorcontrib>Blomme, R.</creatorcontrib><title>A layered model for non-thermal radio emission from single O stars</title><title>Astronomy and astrophysics (Berlin)</title><description>We present a model for the non-thermal radio emission from bright O stars, in terms of synchrotron emission from wind-embedded shocks. The model is an extension of an earlier one, with an improved treatment of the cooling of relativistic electrons. This improvement limits the synchrotron-emitting volume to a series of fairly narrow layers behind the shocks. We show that the width of these layers increases with increasing wavelength, which has important consequences for the shape of the spectrum. We also show that the strongest shocks produce the bulk of the emission, so that the emergent radio flux can be adequately described as coming from a small number of shocks, or even from a single shock.
A single shock model is completely determined by four parameters: the position of the shock, the compression ratio and velocity jump of the shock, and the surface magnetic field. Applying a single shock model to the O5 If star Cyg OB2 No. 9 allows a good determination of the compression ratio and shock position and, to a lesser extent, the magnetic field and velocity jump.
Our main conclusion is that strong shocks need to survive out to distances of a few hundred stellar radii. Even with multiple shocks, the shocks needed to explain the observed emission are stronger than predictions from time-dependent hydrodynamical simulations.</description><subject>outflows</subject><subject>radiation mechanisms: non-thermal</subject><subject>radio continuum: stars</subject><subject>stars: early-type</subject><subject>stars: mass-loss</subject><subject>stars: winds</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhhujiYj-AU-96G21X9tSb0IUTIhEg_HYlH7oaneL7ZLIv3cJiEdPM5N53sk7LwDnGF1hVOJrhBArOOX4hnQdloIegB5mlBRIMH4IenvgGJzk_NGNBA9oDwxvYdBrl5yFdbQuQB8TbGJTtO8u1TrApG0VoaurnKvYQJ9iDXPVvAUHZzC3OuVTcOR1yO5sV_vg5f5uPpoU09n4YXQ7LQwjuC1KS73hjEnLSykpthJhi73HxDIukdCSGUe1XljTmVt4hH1piCReIMIZEbQPLrd3lyl-rVxuVWfKuBB04-IqKzIomaTyfxALSiQVrAPJFjQp5pycV8tU1TqtFUZqk6vaxKY2sanfXDvRxe66zkYHn3Rjqvyn7L4jouQdV2y5Krfue7_X6VNxQUWpBuhVTeaPj8NnOVZP9AcD5oT3</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Van Loo, S.</creator><creator>Runacres, M. C.</creator><creator>Blomme, R.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20050401</creationdate><title>A layered model for non-thermal radio emission from single O stars</title><author>Van Loo, S. ; Runacres, M. C. ; Blomme, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-5d3fc6449d659931d901d1ff12d46907a94ce3aabdc002bf01f5c292f70264273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>outflows</topic><topic>radiation mechanisms: non-thermal</topic><topic>radio continuum: stars</topic><topic>stars: early-type</topic><topic>stars: mass-loss</topic><topic>stars: winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Loo, S.</creatorcontrib><creatorcontrib>Runacres, M. C.</creatorcontrib><creatorcontrib>Blomme, R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Loo, S.</au><au>Runacres, M. C.</au><au>Blomme, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A layered model for non-thermal radio emission from single O stars</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>433</volume><issue>1</issue><spage>313</spage><epage>322</epage><pages>313-322</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><coden>AAEJAF</coden><abstract>We present a model for the non-thermal radio emission from bright O stars, in terms of synchrotron emission from wind-embedded shocks. The model is an extension of an earlier one, with an improved treatment of the cooling of relativistic electrons. This improvement limits the synchrotron-emitting volume to a series of fairly narrow layers behind the shocks. We show that the width of these layers increases with increasing wavelength, which has important consequences for the shape of the spectrum. We also show that the strongest shocks produce the bulk of the emission, so that the emergent radio flux can be adequately described as coming from a small number of shocks, or even from a single shock.
A single shock model is completely determined by four parameters: the position of the shock, the compression ratio and velocity jump of the shock, and the surface magnetic field. Applying a single shock model to the O5 If star Cyg OB2 No. 9 allows a good determination of the compression ratio and shock position and, to a lesser extent, the magnetic field and velocity jump.
Our main conclusion is that strong shocks need to survive out to distances of a few hundred stellar radii. Even with multiple shocks, the shocks needed to explain the observed emission are stronger than predictions from time-dependent hydrodynamical simulations.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361:20041973</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2005-04, Vol.433 (1), p.313-322 |
issn | 0004-6361 1432-0746 |
language | eng |
recordid | cdi_proquest_miscellaneous_28549397 |
source | Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences |
subjects | outflows radiation mechanisms: non-thermal radio continuum: stars stars: early-type stars: mass-loss stars: winds |
title | A layered model for non-thermal radio emission from single O stars |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20layered%20model%20for%20non-thermal%20radio%20emission%20from%20single%20O%20stars&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Van%20Loo,%20S.&rft.date=2005-04-01&rft.volume=433&rft.issue=1&rft.spage=313&rft.epage=322&rft.pages=313-322&rft.issn=0004-6361&rft.eissn=1432-0746&rft.coden=AAEJAF&rft_id=info:doi/10.1051/0004-6361:20041973&rft_dat=%3Cproquest_cross%3E17329374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17329374&rft_id=info:pmid/&rfr_iscdi=true |