Parallel multiplication using fast sorting networks
A recent paper describes the use of Svoboda's binary counter in the construction of fast parallel multipliers. The resulting approach was shown to be faster than the conventional Dadda multiplier when the wordlength N was small. Unfortunately, the growth in the number of gates of that method wa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 1999-06, Vol.48 (6), p.640-645 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 645 |
---|---|
container_issue | 6 |
container_start_page | 640 |
container_title | IEEE transactions on computers |
container_volume | 48 |
creator | Fiore, P.D. |
description | A recent paper describes the use of Svoboda's binary counter in the construction of fast parallel multipliers. The resulting approach was shown to be faster than the conventional Dadda multiplier when the wordlength N was small. Unfortunately, the growth in the number of gates of that method was O(N/sup 3/) and the speed was O(N). In this paper, Batcher's bitonic sorting network and other efficient networks replace the Svoboda counter. The asymptotic growth rate in gates of these new methods is O(N/sup 2/ log/sup 2/ N), and the speed is O(log/sup 2/ N). |
doi_str_mv | 10.1109/12.773800 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28545847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>773800</ieee_id><sourcerecordid>919917777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-4338340efbb9d8ef146f3007a0cd2b32298a8641423cb60f439da27ad380cdc43</originalsourceid><addsrcrecordid>eNqN0EtLxDAQB_AgCq6Pg1dPPYjioevk0TY5yuILFvSg55CmiUSz7ZqkiN_eLF30JuYSQn7zn2EQOsEwxxjEFSbzpqEcYAfNcFU1pRBVvYtmAJiXgjLYRwcxvgFATUDMEH1SQXlvfLEafXJr77RKbuiLMbr-tbAqpiIOIW0evUmfQ3iPR2jPKh_N8fY-RC-3N8-L-3L5ePewuF6WmtYilYxSnhsa27ai48ZiVlsK0CjQHWkpIYIrXjPMCNVtDZZR0SnSqC6PrzvN6CG6mHLXYfgYTUxy5aI23qveDGOUAguBm3yyPP9TEl6xirN_wAY4AQYZXk5QhyHGYKxcB7dS4UtikJtNS0zktOlsz7ahKmrlbVC9dvG3QGBOqyqz04k5Y8zP7zbjGwuxg_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27082040</pqid></control><display><type>article</type><title>Parallel multiplication using fast sorting networks</title><source>IEEE Electronic Library (IEL)</source><creator>Fiore, P.D.</creator><creatorcontrib>Fiore, P.D.</creatorcontrib><description>A recent paper describes the use of Svoboda's binary counter in the construction of fast parallel multipliers. The resulting approach was shown to be faster than the conventional Dadda multiplier when the wordlength N was small. Unfortunately, the growth in the number of gates of that method was O(N/sup 3/) and the speed was O(N). In this paper, Batcher's bitonic sorting network and other efficient networks replace the Svoboda counter. The asymptotic growth rate in gates of these new methods is O(N/sup 2/ log/sup 2/ N), and the speed is O(log/sup 2/ N).</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/12.773800</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adders ; Applied sciences ; Asymptotic properties ; Computer systems ; Construction ; Counting circuits ; Electronics ; Exact sciences and technology ; Gates ; Hardware ; Information, signal and communications theory ; Miscellaneous ; Multiplication ; Multipliers ; Networks ; Propagation delay ; Signal processing ; Sorting ; Telecommunications and information theory</subject><ispartof>IEEE transactions on computers, 1999-06, Vol.48 (6), p.640-645</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-4338340efbb9d8ef146f3007a0cd2b32298a8641423cb60f439da27ad380cdc43</citedby><cites>FETCH-LOGICAL-c369t-4338340efbb9d8ef146f3007a0cd2b32298a8641423cb60f439da27ad380cdc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/773800$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/773800$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1918355$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiore, P.D.</creatorcontrib><title>Parallel multiplication using fast sorting networks</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>A recent paper describes the use of Svoboda's binary counter in the construction of fast parallel multipliers. The resulting approach was shown to be faster than the conventional Dadda multiplier when the wordlength N was small. Unfortunately, the growth in the number of gates of that method was O(N/sup 3/) and the speed was O(N). In this paper, Batcher's bitonic sorting network and other efficient networks replace the Svoboda counter. The asymptotic growth rate in gates of these new methods is O(N/sup 2/ log/sup 2/ N), and the speed is O(log/sup 2/ N).</description><subject>Adders</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Computer systems</subject><subject>Construction</subject><subject>Counting circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gates</subject><subject>Hardware</subject><subject>Information, signal and communications theory</subject><subject>Miscellaneous</subject><subject>Multiplication</subject><subject>Multipliers</subject><subject>Networks</subject><subject>Propagation delay</subject><subject>Signal processing</subject><subject>Sorting</subject><subject>Telecommunications and information theory</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0EtLxDAQB_AgCq6Pg1dPPYjioevk0TY5yuILFvSg55CmiUSz7ZqkiN_eLF30JuYSQn7zn2EQOsEwxxjEFSbzpqEcYAfNcFU1pRBVvYtmAJiXgjLYRwcxvgFATUDMEH1SQXlvfLEafXJr77RKbuiLMbr-tbAqpiIOIW0evUmfQ3iPR2jPKh_N8fY-RC-3N8-L-3L5ePewuF6WmtYilYxSnhsa27ai48ZiVlsK0CjQHWkpIYIrXjPMCNVtDZZR0SnSqC6PrzvN6CG6mHLXYfgYTUxy5aI23qveDGOUAguBm3yyPP9TEl6xirN_wAY4AQYZXk5QhyHGYKxcB7dS4UtikJtNS0zktOlsz7ahKmrlbVC9dvG3QGBOqyqz04k5Y8zP7zbjGwuxg_E</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Fiore, P.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19990601</creationdate><title>Parallel multiplication using fast sorting networks</title><author>Fiore, P.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-4338340efbb9d8ef146f3007a0cd2b32298a8641423cb60f439da27ad380cdc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adders</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Computer systems</topic><topic>Construction</topic><topic>Counting circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gates</topic><topic>Hardware</topic><topic>Information, signal and communications theory</topic><topic>Miscellaneous</topic><topic>Multiplication</topic><topic>Multipliers</topic><topic>Networks</topic><topic>Propagation delay</topic><topic>Signal processing</topic><topic>Sorting</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiore, P.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fiore, P.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel multiplication using fast sorting networks</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>1999-06-01</date><risdate>1999</risdate><volume>48</volume><issue>6</issue><spage>640</spage><epage>645</epage><pages>640-645</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>A recent paper describes the use of Svoboda's binary counter in the construction of fast parallel multipliers. The resulting approach was shown to be faster than the conventional Dadda multiplier when the wordlength N was small. Unfortunately, the growth in the number of gates of that method was O(N/sup 3/) and the speed was O(N). In this paper, Batcher's bitonic sorting network and other efficient networks replace the Svoboda counter. The asymptotic growth rate in gates of these new methods is O(N/sup 2/ log/sup 2/ N), and the speed is O(log/sup 2/ N).</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/12.773800</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 1999-06, Vol.48 (6), p.640-645 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_proquest_miscellaneous_28545847 |
source | IEEE Electronic Library (IEL) |
subjects | Adders Applied sciences Asymptotic properties Computer systems Construction Counting circuits Electronics Exact sciences and technology Gates Hardware Information, signal and communications theory Miscellaneous Multiplication Multipliers Networks Propagation delay Signal processing Sorting Telecommunications and information theory |
title | Parallel multiplication using fast sorting networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20multiplication%20using%20fast%20sorting%20networks&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Fiore,%20P.D.&rft.date=1999-06-01&rft.volume=48&rft.issue=6&rft.spage=640&rft.epage=645&rft.pages=640-645&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/12.773800&rft_dat=%3Cproquest_RIE%3E919917777%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27082040&rft_id=info:pmid/&rft_ieee_id=773800&rfr_iscdi=true |