Parallel multiplication using fast sorting networks

A recent paper describes the use of Svoboda's binary counter in the construction of fast parallel multipliers. The resulting approach was shown to be faster than the conventional Dadda multiplier when the wordlength N was small. Unfortunately, the growth in the number of gates of that method wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1999-06, Vol.48 (6), p.640-645
1. Verfasser: Fiore, P.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 645
container_issue 6
container_start_page 640
container_title IEEE transactions on computers
container_volume 48
creator Fiore, P.D.
description A recent paper describes the use of Svoboda's binary counter in the construction of fast parallel multipliers. The resulting approach was shown to be faster than the conventional Dadda multiplier when the wordlength N was small. Unfortunately, the growth in the number of gates of that method was O(N/sup 3/) and the speed was O(N). In this paper, Batcher's bitonic sorting network and other efficient networks replace the Svoboda counter. The asymptotic growth rate in gates of these new methods is O(N/sup 2/ log/sup 2/ N), and the speed is O(log/sup 2/ N).
doi_str_mv 10.1109/12.773800
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28545847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>773800</ieee_id><sourcerecordid>919917777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-4338340efbb9d8ef146f3007a0cd2b32298a8641423cb60f439da27ad380cdc43</originalsourceid><addsrcrecordid>eNqN0EtLxDAQB_AgCq6Pg1dPPYjioevk0TY5yuILFvSg55CmiUSz7ZqkiN_eLF30JuYSQn7zn2EQOsEwxxjEFSbzpqEcYAfNcFU1pRBVvYtmAJiXgjLYRwcxvgFATUDMEH1SQXlvfLEafXJr77RKbuiLMbr-tbAqpiIOIW0evUmfQ3iPR2jPKh_N8fY-RC-3N8-L-3L5ePewuF6WmtYilYxSnhsa27ai48ZiVlsK0CjQHWkpIYIrXjPMCNVtDZZR0SnSqC6PrzvN6CG6mHLXYfgYTUxy5aI23qveDGOUAguBm3yyPP9TEl6xirN_wAY4AQYZXk5QhyHGYKxcB7dS4UtikJtNS0zktOlsz7ahKmrlbVC9dvG3QGBOqyqz04k5Y8zP7zbjGwuxg_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27082040</pqid></control><display><type>article</type><title>Parallel multiplication using fast sorting networks</title><source>IEEE Electronic Library (IEL)</source><creator>Fiore, P.D.</creator><creatorcontrib>Fiore, P.D.</creatorcontrib><description>A recent paper describes the use of Svoboda's binary counter in the construction of fast parallel multipliers. The resulting approach was shown to be faster than the conventional Dadda multiplier when the wordlength N was small. Unfortunately, the growth in the number of gates of that method was O(N/sup 3/) and the speed was O(N). In this paper, Batcher's bitonic sorting network and other efficient networks replace the Svoboda counter. The asymptotic growth rate in gates of these new methods is O(N/sup 2/ log/sup 2/ N), and the speed is O(log/sup 2/ N).</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/12.773800</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adders ; Applied sciences ; Asymptotic properties ; Computer systems ; Construction ; Counting circuits ; Electronics ; Exact sciences and technology ; Gates ; Hardware ; Information, signal and communications theory ; Miscellaneous ; Multiplication ; Multipliers ; Networks ; Propagation delay ; Signal processing ; Sorting ; Telecommunications and information theory</subject><ispartof>IEEE transactions on computers, 1999-06, Vol.48 (6), p.640-645</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-4338340efbb9d8ef146f3007a0cd2b32298a8641423cb60f439da27ad380cdc43</citedby><cites>FETCH-LOGICAL-c369t-4338340efbb9d8ef146f3007a0cd2b32298a8641423cb60f439da27ad380cdc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/773800$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/773800$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1918355$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiore, P.D.</creatorcontrib><title>Parallel multiplication using fast sorting networks</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>A recent paper describes the use of Svoboda's binary counter in the construction of fast parallel multipliers. The resulting approach was shown to be faster than the conventional Dadda multiplier when the wordlength N was small. Unfortunately, the growth in the number of gates of that method was O(N/sup 3/) and the speed was O(N). In this paper, Batcher's bitonic sorting network and other efficient networks replace the Svoboda counter. The asymptotic growth rate in gates of these new methods is O(N/sup 2/ log/sup 2/ N), and the speed is O(log/sup 2/ N).</description><subject>Adders</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Computer systems</subject><subject>Construction</subject><subject>Counting circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gates</subject><subject>Hardware</subject><subject>Information, signal and communications theory</subject><subject>Miscellaneous</subject><subject>Multiplication</subject><subject>Multipliers</subject><subject>Networks</subject><subject>Propagation delay</subject><subject>Signal processing</subject><subject>Sorting</subject><subject>Telecommunications and information theory</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0EtLxDAQB_AgCq6Pg1dPPYjioevk0TY5yuILFvSg55CmiUSz7ZqkiN_eLF30JuYSQn7zn2EQOsEwxxjEFSbzpqEcYAfNcFU1pRBVvYtmAJiXgjLYRwcxvgFATUDMEH1SQXlvfLEafXJr77RKbuiLMbr-tbAqpiIOIW0evUmfQ3iPR2jPKh_N8fY-RC-3N8-L-3L5ePewuF6WmtYilYxSnhsa27ai48ZiVlsK0CjQHWkpIYIrXjPMCNVtDZZR0SnSqC6PrzvN6CG6mHLXYfgYTUxy5aI23qveDGOUAguBm3yyPP9TEl6xirN_wAY4AQYZXk5QhyHGYKxcB7dS4UtikJtNS0zktOlsz7ahKmrlbVC9dvG3QGBOqyqz04k5Y8zP7zbjGwuxg_E</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Fiore, P.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19990601</creationdate><title>Parallel multiplication using fast sorting networks</title><author>Fiore, P.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-4338340efbb9d8ef146f3007a0cd2b32298a8641423cb60f439da27ad380cdc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adders</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Computer systems</topic><topic>Construction</topic><topic>Counting circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gates</topic><topic>Hardware</topic><topic>Information, signal and communications theory</topic><topic>Miscellaneous</topic><topic>Multiplication</topic><topic>Multipliers</topic><topic>Networks</topic><topic>Propagation delay</topic><topic>Signal processing</topic><topic>Sorting</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiore, P.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fiore, P.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel multiplication using fast sorting networks</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>1999-06-01</date><risdate>1999</risdate><volume>48</volume><issue>6</issue><spage>640</spage><epage>645</epage><pages>640-645</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>A recent paper describes the use of Svoboda's binary counter in the construction of fast parallel multipliers. The resulting approach was shown to be faster than the conventional Dadda multiplier when the wordlength N was small. Unfortunately, the growth in the number of gates of that method was O(N/sup 3/) and the speed was O(N). In this paper, Batcher's bitonic sorting network and other efficient networks replace the Svoboda counter. The asymptotic growth rate in gates of these new methods is O(N/sup 2/ log/sup 2/ N), and the speed is O(log/sup 2/ N).</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/12.773800</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 1999-06, Vol.48 (6), p.640-645
issn 0018-9340
1557-9956
language eng
recordid cdi_proquest_miscellaneous_28545847
source IEEE Electronic Library (IEL)
subjects Adders
Applied sciences
Asymptotic properties
Computer systems
Construction
Counting circuits
Electronics
Exact sciences and technology
Gates
Hardware
Information, signal and communications theory
Miscellaneous
Multiplication
Multipliers
Networks
Propagation delay
Signal processing
Sorting
Telecommunications and information theory
title Parallel multiplication using fast sorting networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20multiplication%20using%20fast%20sorting%20networks&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Fiore,%20P.D.&rft.date=1999-06-01&rft.volume=48&rft.issue=6&rft.spage=640&rft.epage=645&rft.pages=640-645&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/12.773800&rft_dat=%3Cproquest_RIE%3E919917777%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27082040&rft_id=info:pmid/&rft_ieee_id=773800&rfr_iscdi=true