Meander pattern of spiral wave and the spatial distribution of its cycle length

One of the most interesting dynamics of rotating spiral waves in an excitable medium is meandering. The tip of a meandering spiral wave moves along a complex trajectory, which often takes the shape of an epitrochoid or hypotrochoid with inward or outward petals. The cycle lengths (CLs) of a meanderi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2023-01, Vol.107 (1-1), p.014215-014215, Article 014215
Hauptverfasser: Pravdin, Sergei F, Patrakeev, Mikhail A, Panfilov, Alexander V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 014215
container_issue 1-1
container_start_page 014215
container_title Physical review. E
container_volume 107
creator Pravdin, Sergei F
Patrakeev, Mikhail A
Panfilov, Alexander V
description One of the most interesting dynamics of rotating spiral waves in an excitable medium is meandering. The tip of a meandering spiral wave moves along a complex trajectory, which often takes the shape of an epitrochoid or hypotrochoid with inward or outward petals. The cycle lengths (CLs) of a meandering spiral wave are not constant; rather, they depend on the meandering dynamics. In this paper, we show that the CLs take two mean values, outside T^{out} and inside T^{in} the meandering trajectory with a ratio of T^{in}/T^{out}=(n+1)/n for the inward and (n-1)/n for the outward petals, where n is the number of petals in the tip trajectory. We illustrate this using four models of excitable media and prove this result. These formulas are shown to be suitable for a meandering spiral wave in an anatomical model of the heart. We also show that the effective periods of overdrive pacing of meandering spiral waves depend on the electrode location relative to the tip trajectory. Overall, our approach can be used to study the meandering pattern from the CL data; it should work for any type of dynamics that produces complex tip trajectories of the spiral wave, for example, for a drift due to heterogeneity.
doi_str_mv 10.1103/PhysRevE.107.014215
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2854431890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854431890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-da42e043ac5d682a89e3f07d9a49ffd8d293077790e5fdae5159d716c7c193203</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRbKn9BYLk0ZfU2Vs2-yilXqBSEX0O2-zErqRJ3d1U-u9Nbe3TDGfOmQMfIdcUJpQCv3td7cIbbmcTCmoCVDAqz8iQCQUpgOTnp13IARmH8AUANAOtKLskA54prTTVQ7J4QdNY9MnGxIi-SdoqCRvnTZ38mC0m_TGJK-w1E10vWheid8suuvbP62JIyl1ZY1Jj8xlXV-SiMnXA8XGOyMfD7H36lM4Xj8_T-3laMiljao1gCIKbUtosZybXyCtQVhuhq8rmlmkOSikNKCtrUFKpraJZqUqqOQM-IreHvxvffncYYrF2ocS6Ng22XShYLoXgNNd7Kz9YS9-G4LEqNt6tjd8VFIo9zOIfZi-o4gCzT90cC7rlGu0p84-O_wLx2XFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854431890</pqid></control><display><type>article</type><title>Meander pattern of spiral wave and the spatial distribution of its cycle length</title><source>American Physical Society Journals</source><creator>Pravdin, Sergei F ; Patrakeev, Mikhail A ; Panfilov, Alexander V</creator><creatorcontrib>Pravdin, Sergei F ; Patrakeev, Mikhail A ; Panfilov, Alexander V</creatorcontrib><description>One of the most interesting dynamics of rotating spiral waves in an excitable medium is meandering. The tip of a meandering spiral wave moves along a complex trajectory, which often takes the shape of an epitrochoid or hypotrochoid with inward or outward petals. The cycle lengths (CLs) of a meandering spiral wave are not constant; rather, they depend on the meandering dynamics. In this paper, we show that the CLs take two mean values, outside T^{out} and inside T^{in} the meandering trajectory with a ratio of T^{in}/T^{out}=(n+1)/n for the inward and (n-1)/n for the outward petals, where n is the number of petals in the tip trajectory. We illustrate this using four models of excitable media and prove this result. These formulas are shown to be suitable for a meandering spiral wave in an anatomical model of the heart. We also show that the effective periods of overdrive pacing of meandering spiral waves depend on the electrode location relative to the tip trajectory. Overall, our approach can be used to study the meandering pattern from the CL data; it should work for any type of dynamics that produces complex tip trajectories of the spiral wave, for example, for a drift due to heterogeneity.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.107.014215</identifier><identifier>PMID: 36797919</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2023-01, Vol.107 (1-1), p.014215-014215, Article 014215</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-da42e043ac5d682a89e3f07d9a49ffd8d293077790e5fdae5159d716c7c193203</cites><orcidid>0000-0003-4053-8895 ; 0000-0003-2643-642X ; 0000-0001-7654-5208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36797919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pravdin, Sergei F</creatorcontrib><creatorcontrib>Patrakeev, Mikhail A</creatorcontrib><creatorcontrib>Panfilov, Alexander V</creatorcontrib><title>Meander pattern of spiral wave and the spatial distribution of its cycle length</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>One of the most interesting dynamics of rotating spiral waves in an excitable medium is meandering. The tip of a meandering spiral wave moves along a complex trajectory, which often takes the shape of an epitrochoid or hypotrochoid with inward or outward petals. The cycle lengths (CLs) of a meandering spiral wave are not constant; rather, they depend on the meandering dynamics. In this paper, we show that the CLs take two mean values, outside T^{out} and inside T^{in} the meandering trajectory with a ratio of T^{in}/T^{out}=(n+1)/n for the inward and (n-1)/n for the outward petals, where n is the number of petals in the tip trajectory. We illustrate this using four models of excitable media and prove this result. These formulas are shown to be suitable for a meandering spiral wave in an anatomical model of the heart. We also show that the effective periods of overdrive pacing of meandering spiral waves depend on the electrode location relative to the tip trajectory. Overall, our approach can be used to study the meandering pattern from the CL data; it should work for any type of dynamics that produces complex tip trajectories of the spiral wave, for example, for a drift due to heterogeneity.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRbKn9BYLk0ZfU2Vs2-yilXqBSEX0O2-zErqRJ3d1U-u9Nbe3TDGfOmQMfIdcUJpQCv3td7cIbbmcTCmoCVDAqz8iQCQUpgOTnp13IARmH8AUANAOtKLskA54prTTVQ7J4QdNY9MnGxIi-SdoqCRvnTZ38mC0m_TGJK-w1E10vWheid8suuvbP62JIyl1ZY1Jj8xlXV-SiMnXA8XGOyMfD7H36lM4Xj8_T-3laMiljao1gCIKbUtosZybXyCtQVhuhq8rmlmkOSikNKCtrUFKpraJZqUqqOQM-IreHvxvffncYYrF2ocS6Ng22XShYLoXgNNd7Kz9YS9-G4LEqNt6tjd8VFIo9zOIfZi-o4gCzT90cC7rlGu0p84-O_wLx2XFY</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Pravdin, Sergei F</creator><creator>Patrakeev, Mikhail A</creator><creator>Panfilov, Alexander V</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4053-8895</orcidid><orcidid>https://orcid.org/0000-0003-2643-642X</orcidid><orcidid>https://orcid.org/0000-0001-7654-5208</orcidid></search><sort><creationdate>20230101</creationdate><title>Meander pattern of spiral wave and the spatial distribution of its cycle length</title><author>Pravdin, Sergei F ; Patrakeev, Mikhail A ; Panfilov, Alexander V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-da42e043ac5d682a89e3f07d9a49ffd8d293077790e5fdae5159d716c7c193203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pravdin, Sergei F</creatorcontrib><creatorcontrib>Patrakeev, Mikhail A</creatorcontrib><creatorcontrib>Panfilov, Alexander V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pravdin, Sergei F</au><au>Patrakeev, Mikhail A</au><au>Panfilov, Alexander V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meander pattern of spiral wave and the spatial distribution of its cycle length</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>107</volume><issue>1-1</issue><spage>014215</spage><epage>014215</epage><pages>014215-014215</pages><artnum>014215</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>One of the most interesting dynamics of rotating spiral waves in an excitable medium is meandering. The tip of a meandering spiral wave moves along a complex trajectory, which often takes the shape of an epitrochoid or hypotrochoid with inward or outward petals. The cycle lengths (CLs) of a meandering spiral wave are not constant; rather, they depend on the meandering dynamics. In this paper, we show that the CLs take two mean values, outside T^{out} and inside T^{in} the meandering trajectory with a ratio of T^{in}/T^{out}=(n+1)/n for the inward and (n-1)/n for the outward petals, where n is the number of petals in the tip trajectory. We illustrate this using four models of excitable media and prove this result. These formulas are shown to be suitable for a meandering spiral wave in an anatomical model of the heart. We also show that the effective periods of overdrive pacing of meandering spiral waves depend on the electrode location relative to the tip trajectory. Overall, our approach can be used to study the meandering pattern from the CL data; it should work for any type of dynamics that produces complex tip trajectories of the spiral wave, for example, for a drift due to heterogeneity.</abstract><cop>United States</cop><pmid>36797919</pmid><doi>10.1103/PhysRevE.107.014215</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4053-8895</orcidid><orcidid>https://orcid.org/0000-0003-2643-642X</orcidid><orcidid>https://orcid.org/0000-0001-7654-5208</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2023-01, Vol.107 (1-1), p.014215-014215, Article 014215
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2854431890
source American Physical Society Journals
title Meander pattern of spiral wave and the spatial distribution of its cycle length
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meander%20pattern%20of%20spiral%20wave%20and%20the%20spatial%20distribution%20of%20its%20cycle%20length&rft.jtitle=Physical%20review.%20E&rft.au=Pravdin,%20Sergei%20F&rft.date=2023-01-01&rft.volume=107&rft.issue=1-1&rft.spage=014215&rft.epage=014215&rft.pages=014215-014215&rft.artnum=014215&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.107.014215&rft_dat=%3Cproquest_cross%3E2854431890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854431890&rft_id=info:pmid/36797919&rfr_iscdi=true