Phytoaccumulation of trace elements (As, Cd, Co, Cu, Pb, Zn) by Nicotiana glauca and Euphorbia segetalis growing in a Technosol developed on legacy mine wastes (Domingo Rubio wetland, SW Spain)
Sulfidic mine wastes have the potential to generate acid mine drainage (AMD) and release acid leachates containing high levels of iron, sulfate and potentially toxic elements (PTEs). Soils receiving AMD discharges are generally devoid of vegetation. Only a few metal-tolerant plant species can surviv...
Gespeichert in:
Veröffentlicht in: | Environmental geochemistry and health 2023-12, Vol.45 (12), p.9541-9557 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9557 |
---|---|
container_issue | 12 |
container_start_page | 9541 |
container_title | Environmental geochemistry and health |
container_volume | 45 |
creator | Barba-Brioso, C. Hidalgo, P. J. Fernández-Landero, S. Giráldez, I. Fernández-Caliani, J. C. |
description | Sulfidic mine wastes have the potential to generate acid mine drainage (AMD) and release acid leachates containing high levels of iron, sulfate and potentially toxic elements (PTEs). Soils receiving AMD discharges are generally devoid of vegetation. Only a few metal-tolerant plant species can survive under such adverse soil conditions. This work investigates two plant species,
Nicotiana glauca
and
Euphorbia segetalis,
that have successfully colonized an AMD-impacted wetland area in south-western Spain. The uptake of PTEs from the soil by roots and their transfer and accumulation in the above-ground biomass were quantified. Results showed that these pioneer plants grew in patches of neutral soil within the wasteland despite the high concentrations of PTEs in the rhizosphere soil (up to: 613 mg kg
−1
As, 18.7 mg kg
−1
Cd, 6370 mg kg
−1
Cu, 2210 mg kg
−1
Pb and 5250 mg kg
−1
Zn). The target organs of As, Cu and Pb accumulation were: root > leaf > stem in
N. glauca
, and root > stem > leaf in
E. segetalis
. Zinc and Cd showed a significant decrease in roots relative to aerial parts of
N. glauca
, and Co was preferentially partitioned in stems of
N. glauca
and leaves of
E. segetalis
. The soil–plant transfer coefficient values of PTEs in all parts of both plants were well below unity with the only exception of Cd in leaves of
N. glauca
(1.254), suggesting that roots acted as a barrier limiting the uptake of PTEs by plants. Interestingly, under the same soil conditions,
N. glauca
absorbed Cd in considerable proportions from soil and accumulated it in its leaves, while
E. segetalis
was not effective in transferring PTEs from roots shoots except for Co. In conclusion, soil pH and plant-related factors greatly influence the stabilization of PTE in the rhizospheric soil and produce inconsistencies in PTE phytoavailability. The findings of this study provide criteria to assist in natural remediation in other legacy contaminated sites worldwide. |
doi_str_mv | 10.1007/s10653-023-01523-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2854431726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854431726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-7bb60245c88c64a9cbcbfb9c4ef5ed40a219365e4417292132e554e5bcb23a013</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEokPhBVigK7FppQn4N5Msq6EFpAoqWoTEJnKcm4yrxA6xTTSPx5vVMAUkFiyuLcvfOedKJ8ueU_KKErJ57SkpJM8JS0NlOpcH2YrKDc9ZVfKH2YqwosoFEewoe-L9LSGk2ojycXbEi4qVJeGr7MfVbh-c0jqOcVDBOAuugzArjYADjmiDh5Mzv4Ztm8aliWu4atbw1Z5Cs4cPRrtglFXQDypqBcq2cB6nnZsbo8Bjj0ENxkM_u8XYHowFBTeod9Z5N0CL33FwE7aQogfsld7DaCzConzAlP3GpWfv4FNsjIMFw5AS1nD9Ba4nZezp0-xRpwaPz-7v4-zzxfnN9l1--fHt--3ZZa4FrUK-aZqCMCF1WepCqEo3uumaSgvsJLaCKEYrXkgUgm5YxShnKKVAmTDGFaH8ODs5-E6z-xbRh3o0XuOQ1kEXfc1KKQRP4iKhL_9Bb12cbdouURVnhRSlSBQ7UHp23s_Y1dNsRjXva0rqnwXXh4LrVHD9q-B6SaIX99axGbH9I_ndaAL4AfDpy_Y4_83-j-0dzJOxPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893265484</pqid></control><display><type>article</type><title>Phytoaccumulation of trace elements (As, Cd, Co, Cu, Pb, Zn) by Nicotiana glauca and Euphorbia segetalis growing in a Technosol developed on legacy mine wastes (Domingo Rubio wetland, SW Spain)</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Barba-Brioso, C. ; Hidalgo, P. J. ; Fernández-Landero, S. ; Giráldez, I. ; Fernández-Caliani, J. C.</creator><creatorcontrib>Barba-Brioso, C. ; Hidalgo, P. J. ; Fernández-Landero, S. ; Giráldez, I. ; Fernández-Caliani, J. C.</creatorcontrib><description>Sulfidic mine wastes have the potential to generate acid mine drainage (AMD) and release acid leachates containing high levels of iron, sulfate and potentially toxic elements (PTEs). Soils receiving AMD discharges are generally devoid of vegetation. Only a few metal-tolerant plant species can survive under such adverse soil conditions. This work investigates two plant species,
Nicotiana glauca
and
Euphorbia segetalis,
that have successfully colonized an AMD-impacted wetland area in south-western Spain. The uptake of PTEs from the soil by roots and their transfer and accumulation in the above-ground biomass were quantified. Results showed that these pioneer plants grew in patches of neutral soil within the wasteland despite the high concentrations of PTEs in the rhizosphere soil (up to: 613 mg kg
−1
As, 18.7 mg kg
−1
Cd, 6370 mg kg
−1
Cu, 2210 mg kg
−1
Pb and 5250 mg kg
−1
Zn). The target organs of As, Cu and Pb accumulation were: root > leaf > stem in
N. glauca
, and root > stem > leaf in
E. segetalis
. Zinc and Cd showed a significant decrease in roots relative to aerial parts of
N. glauca
, and Co was preferentially partitioned in stems of
N. glauca
and leaves of
E. segetalis
. The soil–plant transfer coefficient values of PTEs in all parts of both plants were well below unity with the only exception of Cd in leaves of
N. glauca
(1.254), suggesting that roots acted as a barrier limiting the uptake of PTEs by plants. Interestingly, under the same soil conditions,
N. glauca
absorbed Cd in considerable proportions from soil and accumulated it in its leaves, while
E. segetalis
was not effective in transferring PTEs from roots shoots except for Co. In conclusion, soil pH and plant-related factors greatly influence the stabilization of PTE in the rhizospheric soil and produce inconsistencies in PTE phytoavailability. The findings of this study provide criteria to assist in natural remediation in other legacy contaminated sites worldwide.</description><identifier>ISSN: 0269-4042</identifier><identifier>EISSN: 1573-2983</identifier><identifier>DOI: 10.1007/s10653-023-01523-w</identifier><identifier>PMID: 36928803</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accumulation ; Acid mine drainage ; Biodegradation, Environmental ; Body organs ; Cadmium ; Copper ; Earth and Environmental Science ; Environment ; Environmental Chemistry ; Environmental Health ; Euphorbia ; Euphorbia segetalis ; Flowers & plants ; Geochemistry ; Heavy metals ; Leachates ; Lead ; Leaves ; Metals, Heavy - analysis ; Mine drainage ; Mine wastes ; Nicotiana ; Nicotiana glauca ; Original Paper ; Phytoremediation ; Plant species ; Plants ; Plants (botany) ; Public Health ; Rhizosphere ; Roots ; Shoots ; Soil ; Soil chemistry ; Soil conditions ; Soil contamination ; Soil pH ; Soil Pollutants - analysis ; Soil Science & Conservation ; Soils ; Spain ; Stems ; Survival ; Terrestrial Pollution ; Trace elements ; Trace Elements - analysis ; Uptake ; Water pollution ; Wetlands ; Zinc</subject><ispartof>Environmental geochemistry and health, 2023-12, Vol.45 (12), p.9541-9557</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-7bb60245c88c64a9cbcbfb9c4ef5ed40a219365e4417292132e554e5bcb23a013</citedby><cites>FETCH-LOGICAL-c419t-7bb60245c88c64a9cbcbfb9c4ef5ed40a219365e4417292132e554e5bcb23a013</cites><orcidid>0000-0002-7557-4573 ; 0000-0002-1580-7929 ; 0000-0002-6277-0161 ; 0000-0001-9704-8139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10653-023-01523-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10653-023-01523-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36928803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barba-Brioso, C.</creatorcontrib><creatorcontrib>Hidalgo, P. J.</creatorcontrib><creatorcontrib>Fernández-Landero, S.</creatorcontrib><creatorcontrib>Giráldez, I.</creatorcontrib><creatorcontrib>Fernández-Caliani, J. C.</creatorcontrib><title>Phytoaccumulation of trace elements (As, Cd, Co, Cu, Pb, Zn) by Nicotiana glauca and Euphorbia segetalis growing in a Technosol developed on legacy mine wastes (Domingo Rubio wetland, SW Spain)</title><title>Environmental geochemistry and health</title><addtitle>Environ Geochem Health</addtitle><addtitle>Environ Geochem Health</addtitle><description>Sulfidic mine wastes have the potential to generate acid mine drainage (AMD) and release acid leachates containing high levels of iron, sulfate and potentially toxic elements (PTEs). Soils receiving AMD discharges are generally devoid of vegetation. Only a few metal-tolerant plant species can survive under such adverse soil conditions. This work investigates two plant species,
Nicotiana glauca
and
Euphorbia segetalis,
that have successfully colonized an AMD-impacted wetland area in south-western Spain. The uptake of PTEs from the soil by roots and their transfer and accumulation in the above-ground biomass were quantified. Results showed that these pioneer plants grew in patches of neutral soil within the wasteland despite the high concentrations of PTEs in the rhizosphere soil (up to: 613 mg kg
−1
As, 18.7 mg kg
−1
Cd, 6370 mg kg
−1
Cu, 2210 mg kg
−1
Pb and 5250 mg kg
−1
Zn). The target organs of As, Cu and Pb accumulation were: root > leaf > stem in
N. glauca
, and root > stem > leaf in
E. segetalis
. Zinc and Cd showed a significant decrease in roots relative to aerial parts of
N. glauca
, and Co was preferentially partitioned in stems of
N. glauca
and leaves of
E. segetalis
. The soil–plant transfer coefficient values of PTEs in all parts of both plants were well below unity with the only exception of Cd in leaves of
N. glauca
(1.254), suggesting that roots acted as a barrier limiting the uptake of PTEs by plants. Interestingly, under the same soil conditions,
N. glauca
absorbed Cd in considerable proportions from soil and accumulated it in its leaves, while
E. segetalis
was not effective in transferring PTEs from roots shoots except for Co. In conclusion, soil pH and plant-related factors greatly influence the stabilization of PTE in the rhizospheric soil and produce inconsistencies in PTE phytoavailability. The findings of this study provide criteria to assist in natural remediation in other legacy contaminated sites worldwide.</description><subject>Accumulation</subject><subject>Acid mine drainage</subject><subject>Biodegradation, Environmental</subject><subject>Body organs</subject><subject>Cadmium</subject><subject>Copper</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Euphorbia</subject><subject>Euphorbia segetalis</subject><subject>Flowers & plants</subject><subject>Geochemistry</subject><subject>Heavy metals</subject><subject>Leachates</subject><subject>Lead</subject><subject>Leaves</subject><subject>Metals, Heavy - analysis</subject><subject>Mine drainage</subject><subject>Mine wastes</subject><subject>Nicotiana</subject><subject>Nicotiana glauca</subject><subject>Original Paper</subject><subject>Phytoremediation</subject><subject>Plant species</subject><subject>Plants</subject><subject>Plants (botany)</subject><subject>Public Health</subject><subject>Rhizosphere</subject><subject>Roots</subject><subject>Shoots</subject><subject>Soil</subject><subject>Soil chemistry</subject><subject>Soil conditions</subject><subject>Soil contamination</subject><subject>Soil pH</subject><subject>Soil Pollutants - analysis</subject><subject>Soil Science & Conservation</subject><subject>Soils</subject><subject>Spain</subject><subject>Stems</subject><subject>Survival</subject><subject>Terrestrial Pollution</subject><subject>Trace elements</subject><subject>Trace Elements - analysis</subject><subject>Uptake</subject><subject>Water pollution</subject><subject>Wetlands</subject><subject>Zinc</subject><issn>0269-4042</issn><issn>1573-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhSMEokPhBVigK7FppQn4N5Msq6EFpAoqWoTEJnKcm4yrxA6xTTSPx5vVMAUkFiyuLcvfOedKJ8ueU_KKErJ57SkpJM8JS0NlOpcH2YrKDc9ZVfKH2YqwosoFEewoe-L9LSGk2ojycXbEi4qVJeGr7MfVbh-c0jqOcVDBOAuugzArjYADjmiDh5Mzv4Ztm8aliWu4atbw1Z5Cs4cPRrtglFXQDypqBcq2cB6nnZsbo8Bjj0ENxkM_u8XYHowFBTeod9Z5N0CL33FwE7aQogfsld7DaCzConzAlP3GpWfv4FNsjIMFw5AS1nD9Ba4nZezp0-xRpwaPz-7v4-zzxfnN9l1--fHt--3ZZa4FrUK-aZqCMCF1WepCqEo3uumaSgvsJLaCKEYrXkgUgm5YxShnKKVAmTDGFaH8ODs5-E6z-xbRh3o0XuOQ1kEXfc1KKQRP4iKhL_9Bb12cbdouURVnhRSlSBQ7UHp23s_Y1dNsRjXva0rqnwXXh4LrVHD9q-B6SaIX99axGbH9I_ndaAL4AfDpy_Y4_83-j-0dzJOxPQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Barba-Brioso, C.</creator><creator>Hidalgo, P. J.</creator><creator>Fernández-Landero, S.</creator><creator>Giráldez, I.</creator><creator>Fernández-Caliani, J. C.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7557-4573</orcidid><orcidid>https://orcid.org/0000-0002-1580-7929</orcidid><orcidid>https://orcid.org/0000-0002-6277-0161</orcidid><orcidid>https://orcid.org/0000-0001-9704-8139</orcidid></search><sort><creationdate>20231201</creationdate><title>Phytoaccumulation of trace elements (As, Cd, Co, Cu, Pb, Zn) by Nicotiana glauca and Euphorbia segetalis growing in a Technosol developed on legacy mine wastes (Domingo Rubio wetland, SW Spain)</title><author>Barba-Brioso, C. ; Hidalgo, P. J. ; Fernández-Landero, S. ; Giráldez, I. ; Fernández-Caliani, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-7bb60245c88c64a9cbcbfb9c4ef5ed40a219365e4417292132e554e5bcb23a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accumulation</topic><topic>Acid mine drainage</topic><topic>Biodegradation, Environmental</topic><topic>Body organs</topic><topic>Cadmium</topic><topic>Copper</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Euphorbia</topic><topic>Euphorbia segetalis</topic><topic>Flowers & plants</topic><topic>Geochemistry</topic><topic>Heavy metals</topic><topic>Leachates</topic><topic>Lead</topic><topic>Leaves</topic><topic>Metals, Heavy - analysis</topic><topic>Mine drainage</topic><topic>Mine wastes</topic><topic>Nicotiana</topic><topic>Nicotiana glauca</topic><topic>Original Paper</topic><topic>Phytoremediation</topic><topic>Plant species</topic><topic>Plants</topic><topic>Plants (botany)</topic><topic>Public Health</topic><topic>Rhizosphere</topic><topic>Roots</topic><topic>Shoots</topic><topic>Soil</topic><topic>Soil chemistry</topic><topic>Soil conditions</topic><topic>Soil contamination</topic><topic>Soil pH</topic><topic>Soil Pollutants - analysis</topic><topic>Soil Science & Conservation</topic><topic>Soils</topic><topic>Spain</topic><topic>Stems</topic><topic>Survival</topic><topic>Terrestrial Pollution</topic><topic>Trace elements</topic><topic>Trace Elements - analysis</topic><topic>Uptake</topic><topic>Water pollution</topic><topic>Wetlands</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barba-Brioso, C.</creatorcontrib><creatorcontrib>Hidalgo, P. J.</creatorcontrib><creatorcontrib>Fernández-Landero, S.</creatorcontrib><creatorcontrib>Giráldez, I.</creatorcontrib><creatorcontrib>Fernández-Caliani, J. C.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental geochemistry and health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barba-Brioso, C.</au><au>Hidalgo, P. J.</au><au>Fernández-Landero, S.</au><au>Giráldez, I.</au><au>Fernández-Caliani, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytoaccumulation of trace elements (As, Cd, Co, Cu, Pb, Zn) by Nicotiana glauca and Euphorbia segetalis growing in a Technosol developed on legacy mine wastes (Domingo Rubio wetland, SW Spain)</atitle><jtitle>Environmental geochemistry and health</jtitle><stitle>Environ Geochem Health</stitle><addtitle>Environ Geochem Health</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>45</volume><issue>12</issue><spage>9541</spage><epage>9557</epage><pages>9541-9557</pages><issn>0269-4042</issn><eissn>1573-2983</eissn><abstract>Sulfidic mine wastes have the potential to generate acid mine drainage (AMD) and release acid leachates containing high levels of iron, sulfate and potentially toxic elements (PTEs). Soils receiving AMD discharges are generally devoid of vegetation. Only a few metal-tolerant plant species can survive under such adverse soil conditions. This work investigates two plant species,
Nicotiana glauca
and
Euphorbia segetalis,
that have successfully colonized an AMD-impacted wetland area in south-western Spain. The uptake of PTEs from the soil by roots and their transfer and accumulation in the above-ground biomass were quantified. Results showed that these pioneer plants grew in patches of neutral soil within the wasteland despite the high concentrations of PTEs in the rhizosphere soil (up to: 613 mg kg
−1
As, 18.7 mg kg
−1
Cd, 6370 mg kg
−1
Cu, 2210 mg kg
−1
Pb and 5250 mg kg
−1
Zn). The target organs of As, Cu and Pb accumulation were: root > leaf > stem in
N. glauca
, and root > stem > leaf in
E. segetalis
. Zinc and Cd showed a significant decrease in roots relative to aerial parts of
N. glauca
, and Co was preferentially partitioned in stems of
N. glauca
and leaves of
E. segetalis
. The soil–plant transfer coefficient values of PTEs in all parts of both plants were well below unity with the only exception of Cd in leaves of
N. glauca
(1.254), suggesting that roots acted as a barrier limiting the uptake of PTEs by plants. Interestingly, under the same soil conditions,
N. glauca
absorbed Cd in considerable proportions from soil and accumulated it in its leaves, while
E. segetalis
was not effective in transferring PTEs from roots shoots except for Co. In conclusion, soil pH and plant-related factors greatly influence the stabilization of PTE in the rhizospheric soil and produce inconsistencies in PTE phytoavailability. The findings of this study provide criteria to assist in natural remediation in other legacy contaminated sites worldwide.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>36928803</pmid><doi>10.1007/s10653-023-01523-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7557-4573</orcidid><orcidid>https://orcid.org/0000-0002-1580-7929</orcidid><orcidid>https://orcid.org/0000-0002-6277-0161</orcidid><orcidid>https://orcid.org/0000-0001-9704-8139</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-4042 |
ispartof | Environmental geochemistry and health, 2023-12, Vol.45 (12), p.9541-9557 |
issn | 0269-4042 1573-2983 |
language | eng |
recordid | cdi_proquest_miscellaneous_2854431726 |
source | MEDLINE; SpringerNature Journals |
subjects | Accumulation Acid mine drainage Biodegradation, Environmental Body organs Cadmium Copper Earth and Environmental Science Environment Environmental Chemistry Environmental Health Euphorbia Euphorbia segetalis Flowers & plants Geochemistry Heavy metals Leachates Lead Leaves Metals, Heavy - analysis Mine drainage Mine wastes Nicotiana Nicotiana glauca Original Paper Phytoremediation Plant species Plants Plants (botany) Public Health Rhizosphere Roots Shoots Soil Soil chemistry Soil conditions Soil contamination Soil pH Soil Pollutants - analysis Soil Science & Conservation Soils Spain Stems Survival Terrestrial Pollution Trace elements Trace Elements - analysis Uptake Water pollution Wetlands Zinc |
title | Phytoaccumulation of trace elements (As, Cd, Co, Cu, Pb, Zn) by Nicotiana glauca and Euphorbia segetalis growing in a Technosol developed on legacy mine wastes (Domingo Rubio wetland, SW Spain) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T06%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytoaccumulation%20of%20trace%20elements%20(As,%20Cd,%20Co,%20Cu,%20Pb,%20Zn)%20by%20Nicotiana%20glauca%20and%20Euphorbia%20segetalis%20growing%20in%20a%20Technosol%20developed%20on%20legacy%20mine%20wastes%20(Domingo%20Rubio%20wetland,%20SW%20Spain)&rft.jtitle=Environmental%20geochemistry%20and%20health&rft.au=Barba-Brioso,%20C.&rft.date=2023-12-01&rft.volume=45&rft.issue=12&rft.spage=9541&rft.epage=9557&rft.pages=9541-9557&rft.issn=0269-4042&rft.eissn=1573-2983&rft_id=info:doi/10.1007/s10653-023-01523-w&rft_dat=%3Cproquest_cross%3E2854431726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893265484&rft_id=info:pmid/36928803&rfr_iscdi=true |