High-Performance Organic Source-Gated Transistors Enabled by the Indium-Tin Oxide–Diketopyrrolopyrrole Polymer Interface

Source-gated transistors are a new driver of low-power high-gain thin-film electronics. However, source-gated transistors based on organic semiconductors are not widely investigated yet despite their potential for future display and sensor technologies. We report on the fabrication and modeling of h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-03, Vol.15 (8), p.10918-10925
Hauptverfasser: Lee, Hyuna, Kim, Yeo Eun, Bae, Jisuk, Jung, Sungyeop, Sporea, Radu A., Kim, Chang-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10925
container_issue 8
container_start_page 10918
container_title ACS applied materials & interfaces
container_volume 15
creator Lee, Hyuna
Kim, Yeo Eun
Bae, Jisuk
Jung, Sungyeop
Sporea, Radu A.
Kim, Chang-Hyun
description Source-gated transistors are a new driver of low-power high-gain thin-film electronics. However, source-gated transistors based on organic semiconductors are not widely investigated yet despite their potential for future display and sensor technologies. We report on the fabrication and modeling of high-performance organic source-gated transistors utilizing a critical junction formed between indium-tin oxide and diketopyrrolopyrrole polymer. This partially blocked hole–injection interface is shown to offer both a sufficient level of drain currents and a strong depletion effect necessary for source pinch-off. As a result, our transistors exhibit a set of outstanding metrics, including an intrinsic gain of 160 V/V, an output resistance of 4.6 GΩ, and a saturation coefficient of 0.2 at an operating voltage of 5 V. Drift-diffusion simulation is employed to reproduce and rationalize the experimental data. The modeling reveals that the effective contact length is significantly reduced in an interdigitated electrode geometry, eventually contributing to the realization of low-voltage saturation.
doi_str_mv 10.1021/acsami.2c22350
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2854428411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854428411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a260t-9a6e8a654140916ecef27fa6e5f159222693f005641993a9b90a265cb40e600b3</originalsourceid><addsrcrecordid>eNp1kMFOAjEURRujEUS3Ls0sjclg22kLXRpEICGBRFxPOuUNFGem2M4k4sp_8A_9EmtAdq5e83Lubd5B6JrgLsGU3CvtVWm6VFOacHyC2kQyFvcpp6fHN2MtdOH9BmORUMzPUSsRPSl7PdJGH2OzWsdzcLl1pao0RDO3UpXR0bNtnIZ4pGpYRgunKm98bZ2PhpXKirDLdlG9hmhSLU1TxgtTRbN3s4Tvz69H8wq13e6cs8VhQDS3xa4EF_g6_KY0XKKzXBUerg6zg16ehovBOJ7ORpPBwzRWVOA6lkpAXwnOCMOSCNCQ014eljwnXFJKhUxyjLlgRMpEyUziEOQ6YxgExlnSQbf73q2zbw34Oi2N11AUqgLb-JT2OWO0zwgJaHePame9d5CnW2dK5XYpwemv73TvOz34DoGbQ3eTlbA84n-CA3C3B0Iw3QSlVTj1v7YfyhyMrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854428411</pqid></control><display><type>article</type><title>High-Performance Organic Source-Gated Transistors Enabled by the Indium-Tin Oxide–Diketopyrrolopyrrole Polymer Interface</title><source>American Chemical Society Journals</source><creator>Lee, Hyuna ; Kim, Yeo Eun ; Bae, Jisuk ; Jung, Sungyeop ; Sporea, Radu A. ; Kim, Chang-Hyun</creator><creatorcontrib>Lee, Hyuna ; Kim, Yeo Eun ; Bae, Jisuk ; Jung, Sungyeop ; Sporea, Radu A. ; Kim, Chang-Hyun</creatorcontrib><description>Source-gated transistors are a new driver of low-power high-gain thin-film electronics. However, source-gated transistors based on organic semiconductors are not widely investigated yet despite their potential for future display and sensor technologies. We report on the fabrication and modeling of high-performance organic source-gated transistors utilizing a critical junction formed between indium-tin oxide and diketopyrrolopyrrole polymer. This partially blocked hole–injection interface is shown to offer both a sufficient level of drain currents and a strong depletion effect necessary for source pinch-off. As a result, our transistors exhibit a set of outstanding metrics, including an intrinsic gain of 160 V/V, an output resistance of 4.6 GΩ, and a saturation coefficient of 0.2 at an operating voltage of 5 V. Drift-diffusion simulation is employed to reproduce and rationalize the experimental data. The modeling reveals that the effective contact length is significantly reduced in an interdigitated electrode geometry, eventually contributing to the realization of low-voltage saturation.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c22350</identifier><identifier>PMID: 36799771</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Organic Electronic Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2023-03, Vol.15 (8), p.10918-10925</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a260t-9a6e8a654140916ecef27fa6e5f159222693f005641993a9b90a265cb40e600b3</citedby><cites>FETCH-LOGICAL-a260t-9a6e8a654140916ecef27fa6e5f159222693f005641993a9b90a265cb40e600b3</cites><orcidid>0000-0002-3759-3255 ; 0000-0002-7112-6335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c22350$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c22350$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36799771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hyuna</creatorcontrib><creatorcontrib>Kim, Yeo Eun</creatorcontrib><creatorcontrib>Bae, Jisuk</creatorcontrib><creatorcontrib>Jung, Sungyeop</creatorcontrib><creatorcontrib>Sporea, Radu A.</creatorcontrib><creatorcontrib>Kim, Chang-Hyun</creatorcontrib><title>High-Performance Organic Source-Gated Transistors Enabled by the Indium-Tin Oxide–Diketopyrrolopyrrole Polymer Interface</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Source-gated transistors are a new driver of low-power high-gain thin-film electronics. However, source-gated transistors based on organic semiconductors are not widely investigated yet despite their potential for future display and sensor technologies. We report on the fabrication and modeling of high-performance organic source-gated transistors utilizing a critical junction formed between indium-tin oxide and diketopyrrolopyrrole polymer. This partially blocked hole–injection interface is shown to offer both a sufficient level of drain currents and a strong depletion effect necessary for source pinch-off. As a result, our transistors exhibit a set of outstanding metrics, including an intrinsic gain of 160 V/V, an output resistance of 4.6 GΩ, and a saturation coefficient of 0.2 at an operating voltage of 5 V. Drift-diffusion simulation is employed to reproduce and rationalize the experimental data. The modeling reveals that the effective contact length is significantly reduced in an interdigitated electrode geometry, eventually contributing to the realization of low-voltage saturation.</description><subject>Organic Electronic Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOAjEURRujEUS3Ls0sjclg22kLXRpEICGBRFxPOuUNFGem2M4k4sp_8A_9EmtAdq5e83Lubd5B6JrgLsGU3CvtVWm6VFOacHyC2kQyFvcpp6fHN2MtdOH9BmORUMzPUSsRPSl7PdJGH2OzWsdzcLl1pao0RDO3UpXR0bNtnIZ4pGpYRgunKm98bZ2PhpXKirDLdlG9hmhSLU1TxgtTRbN3s4Tvz69H8wq13e6cs8VhQDS3xa4EF_g6_KY0XKKzXBUerg6zg16ehovBOJ7ORpPBwzRWVOA6lkpAXwnOCMOSCNCQ014eljwnXFJKhUxyjLlgRMpEyUziEOQ6YxgExlnSQbf73q2zbw34Oi2N11AUqgLb-JT2OWO0zwgJaHePame9d5CnW2dK5XYpwemv73TvOz34DoGbQ3eTlbA84n-CA3C3B0Iw3QSlVTj1v7YfyhyMrA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Lee, Hyuna</creator><creator>Kim, Yeo Eun</creator><creator>Bae, Jisuk</creator><creator>Jung, Sungyeop</creator><creator>Sporea, Radu A.</creator><creator>Kim, Chang-Hyun</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3759-3255</orcidid><orcidid>https://orcid.org/0000-0002-7112-6335</orcidid></search><sort><creationdate>20230301</creationdate><title>High-Performance Organic Source-Gated Transistors Enabled by the Indium-Tin Oxide–Diketopyrrolopyrrole Polymer Interface</title><author>Lee, Hyuna ; Kim, Yeo Eun ; Bae, Jisuk ; Jung, Sungyeop ; Sporea, Radu A. ; Kim, Chang-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a260t-9a6e8a654140916ecef27fa6e5f159222693f005641993a9b90a265cb40e600b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Organic Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyuna</creatorcontrib><creatorcontrib>Kim, Yeo Eun</creatorcontrib><creatorcontrib>Bae, Jisuk</creatorcontrib><creatorcontrib>Jung, Sungyeop</creatorcontrib><creatorcontrib>Sporea, Radu A.</creatorcontrib><creatorcontrib>Kim, Chang-Hyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hyuna</au><au>Kim, Yeo Eun</au><au>Bae, Jisuk</au><au>Jung, Sungyeop</au><au>Sporea, Radu A.</au><au>Kim, Chang-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Organic Source-Gated Transistors Enabled by the Indium-Tin Oxide–Diketopyrrolopyrrole Polymer Interface</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>15</volume><issue>8</issue><spage>10918</spage><epage>10925</epage><pages>10918-10925</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Source-gated transistors are a new driver of low-power high-gain thin-film electronics. However, source-gated transistors based on organic semiconductors are not widely investigated yet despite their potential for future display and sensor technologies. We report on the fabrication and modeling of high-performance organic source-gated transistors utilizing a critical junction formed between indium-tin oxide and diketopyrrolopyrrole polymer. This partially blocked hole–injection interface is shown to offer both a sufficient level of drain currents and a strong depletion effect necessary for source pinch-off. As a result, our transistors exhibit a set of outstanding metrics, including an intrinsic gain of 160 V/V, an output resistance of 4.6 GΩ, and a saturation coefficient of 0.2 at an operating voltage of 5 V. Drift-diffusion simulation is employed to reproduce and rationalize the experimental data. The modeling reveals that the effective contact length is significantly reduced in an interdigitated electrode geometry, eventually contributing to the realization of low-voltage saturation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36799771</pmid><doi>10.1021/acsami.2c22350</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3759-3255</orcidid><orcidid>https://orcid.org/0000-0002-7112-6335</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-03, Vol.15 (8), p.10918-10925
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2854428411
source American Chemical Society Journals
subjects Organic Electronic Devices
title High-Performance Organic Source-Gated Transistors Enabled by the Indium-Tin Oxide–Diketopyrrolopyrrole Polymer Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Organic%20Source-Gated%20Transistors%20Enabled%20by%20the%20Indium-Tin%20Oxide%E2%80%93Diketopyrrolopyrrole%20Polymer%20Interface&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lee,%20Hyuna&rft.date=2023-03-01&rft.volume=15&rft.issue=8&rft.spage=10918&rft.epage=10925&rft.pages=10918-10925&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c22350&rft_dat=%3Cproquest_cross%3E2854428411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854428411&rft_id=info:pmid/36799771&rfr_iscdi=true