Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception
Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special f...
Gespeichert in:
Veröffentlicht in: | Brain (London, England : 1878) England : 1878), 2023-12, Vol.146 (12), p.4809-4825 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4825 |
---|---|
container_issue | 12 |
container_start_page | 4809 |
container_title | Brain (London, England : 1878) |
container_volume | 146 |
creator | Schilling, Achim Sedley, William Gerum, Richard Metzner, Claus Tziridis, Konstantin Maier, Andreas Schulze, Holger Zeng, Fan-Gang Friston, Karl J Krauss, Patrick |
description | Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques. |
doi_str_mv | 10.1093/brain/awad255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2854426498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854426498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-f593f0f900b2eb899dddbbf502bbebc11232dc3353825e7d16a594e863f853583</originalsourceid><addsrcrecordid>eNo90DtPwzAUhmELgWgpjKzII0uoL3GajKjiJlWCAebIl2NqlNjBdkD997S0MJ3l0SedF6FLSm4oafhcRen8XH5Lw4Q4QlNaVqRgVFTHaEoIqYq6EWSCzlL6IISWnFWnaMIXgvAFE1OkXyIYp7P7AqyDcf4dS29wykGvZcpO4wgpeOk1YJmwHb2RPfgsOzxE57UbOkg4WCxH43KIGzyspc-hxwNEDUN2wZ-jEyu7BBeHO0Nv93evy8di9fzwtLxdFZpzlgsrGm6JbQhRDFTdNMYYpawgTClQmlLGmdlSwWsmYGFoJUVTQl1xWwsuaj5D1_vdIYbPEVJue5c0dJ30EMbUslqUJavKZkeLPdUxpBTBtttvehk3LSXtrmv727U9dN36q8P0qHow__ovJP8BBa13ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854426498</pqid></control><display><type>article</type><title>Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Schilling, Achim ; Sedley, William ; Gerum, Richard ; Metzner, Claus ; Tziridis, Konstantin ; Maier, Andreas ; Schulze, Holger ; Zeng, Fan-Gang ; Friston, Karl J ; Krauss, Patrick</creator><creatorcontrib>Schilling, Achim ; Sedley, William ; Gerum, Richard ; Metzner, Claus ; Tziridis, Konstantin ; Maier, Andreas ; Schulze, Holger ; Zeng, Fan-Gang ; Friston, Karl J ; Krauss, Patrick</creatorcontrib><description>Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques.</description><identifier>ISSN: 0006-8950</identifier><identifier>ISSN: 1460-2156</identifier><identifier>EISSN: 1460-2156</identifier><identifier>DOI: 10.1093/brain/awad255</identifier><identifier>PMID: 37503725</identifier><language>eng</language><publisher>England</publisher><subject>Artificial Intelligence ; Auditory Pathways ; Auditory Perception ; Bayes Theorem ; Hearing Loss ; Humans ; Tinnitus - psychology</subject><ispartof>Brain (London, England : 1878), 2023-12, Vol.146 (12), p.4809-4825</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-f593f0f900b2eb899dddbbf502bbebc11232dc3353825e7d16a594e863f853583</citedby><cites>FETCH-LOGICAL-c332t-f593f0f900b2eb899dddbbf502bbebc11232dc3353825e7d16a594e863f853583</cites><orcidid>0000-0001-7984-8909 ; 0000-0001-9543-305X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37503725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schilling, Achim</creatorcontrib><creatorcontrib>Sedley, William</creatorcontrib><creatorcontrib>Gerum, Richard</creatorcontrib><creatorcontrib>Metzner, Claus</creatorcontrib><creatorcontrib>Tziridis, Konstantin</creatorcontrib><creatorcontrib>Maier, Andreas</creatorcontrib><creatorcontrib>Schulze, Holger</creatorcontrib><creatorcontrib>Zeng, Fan-Gang</creatorcontrib><creatorcontrib>Friston, Karl J</creatorcontrib><creatorcontrib>Krauss, Patrick</creatorcontrib><title>Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception</title><title>Brain (London, England : 1878)</title><addtitle>Brain</addtitle><description>Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques.</description><subject>Artificial Intelligence</subject><subject>Auditory Pathways</subject><subject>Auditory Perception</subject><subject>Bayes Theorem</subject><subject>Hearing Loss</subject><subject>Humans</subject><subject>Tinnitus - psychology</subject><issn>0006-8950</issn><issn>1460-2156</issn><issn>1460-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90DtPwzAUhmELgWgpjKzII0uoL3GajKjiJlWCAebIl2NqlNjBdkD997S0MJ3l0SedF6FLSm4oafhcRen8XH5Lw4Q4QlNaVqRgVFTHaEoIqYq6EWSCzlL6IISWnFWnaMIXgvAFE1OkXyIYp7P7AqyDcf4dS29wykGvZcpO4wgpeOk1YJmwHb2RPfgsOzxE57UbOkg4WCxH43KIGzyspc-hxwNEDUN2wZ-jEyu7BBeHO0Nv93evy8di9fzwtLxdFZpzlgsrGm6JbQhRDFTdNMYYpawgTClQmlLGmdlSwWsmYGFoJUVTQl1xWwsuaj5D1_vdIYbPEVJue5c0dJ30EMbUslqUJavKZkeLPdUxpBTBtttvehk3LSXtrmv727U9dN36q8P0qHow__ovJP8BBa13ug</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Schilling, Achim</creator><creator>Sedley, William</creator><creator>Gerum, Richard</creator><creator>Metzner, Claus</creator><creator>Tziridis, Konstantin</creator><creator>Maier, Andreas</creator><creator>Schulze, Holger</creator><creator>Zeng, Fan-Gang</creator><creator>Friston, Karl J</creator><creator>Krauss, Patrick</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7984-8909</orcidid><orcidid>https://orcid.org/0000-0001-9543-305X</orcidid></search><sort><creationdate>20231201</creationdate><title>Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception</title><author>Schilling, Achim ; Sedley, William ; Gerum, Richard ; Metzner, Claus ; Tziridis, Konstantin ; Maier, Andreas ; Schulze, Holger ; Zeng, Fan-Gang ; Friston, Karl J ; Krauss, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-f593f0f900b2eb899dddbbf502bbebc11232dc3353825e7d16a594e863f853583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Auditory Pathways</topic><topic>Auditory Perception</topic><topic>Bayes Theorem</topic><topic>Hearing Loss</topic><topic>Humans</topic><topic>Tinnitus - psychology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schilling, Achim</creatorcontrib><creatorcontrib>Sedley, William</creatorcontrib><creatorcontrib>Gerum, Richard</creatorcontrib><creatorcontrib>Metzner, Claus</creatorcontrib><creatorcontrib>Tziridis, Konstantin</creatorcontrib><creatorcontrib>Maier, Andreas</creatorcontrib><creatorcontrib>Schulze, Holger</creatorcontrib><creatorcontrib>Zeng, Fan-Gang</creatorcontrib><creatorcontrib>Friston, Karl J</creatorcontrib><creatorcontrib>Krauss, Patrick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Brain (London, England : 1878)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schilling, Achim</au><au>Sedley, William</au><au>Gerum, Richard</au><au>Metzner, Claus</au><au>Tziridis, Konstantin</au><au>Maier, Andreas</au><au>Schulze, Holger</au><au>Zeng, Fan-Gang</au><au>Friston, Karl J</au><au>Krauss, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception</atitle><jtitle>Brain (London, England : 1878)</jtitle><addtitle>Brain</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>146</volume><issue>12</issue><spage>4809</spage><epage>4825</epage><pages>4809-4825</pages><issn>0006-8950</issn><issn>1460-2156</issn><eissn>1460-2156</eissn><abstract>Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques.</abstract><cop>England</cop><pmid>37503725</pmid><doi>10.1093/brain/awad255</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7984-8909</orcidid><orcidid>https://orcid.org/0000-0001-9543-305X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8950 |
ispartof | Brain (London, England : 1878), 2023-12, Vol.146 (12), p.4809-4825 |
issn | 0006-8950 1460-2156 1460-2156 |
language | eng |
recordid | cdi_proquest_miscellaneous_2854426498 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Artificial Intelligence Auditory Pathways Auditory Perception Bayes Theorem Hearing Loss Humans Tinnitus - psychology |
title | Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20coding%20and%20stochastic%20resonance%20as%20fundamental%20principles%20of%20auditory%20phantom%20perception&rft.jtitle=Brain%20(London,%20England%20:%201878)&rft.au=Schilling,%20Achim&rft.date=2023-12-01&rft.volume=146&rft.issue=12&rft.spage=4809&rft.epage=4825&rft.pages=4809-4825&rft.issn=0006-8950&rft.eissn=1460-2156&rft_id=info:doi/10.1093/brain/awad255&rft_dat=%3Cproquest_cross%3E2854426498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854426498&rft_id=info:pmid/37503725&rfr_iscdi=true |