Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception

Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain (London, England : 1878) England : 1878), 2023-12, Vol.146 (12), p.4809-4825
Hauptverfasser: Schilling, Achim, Sedley, William, Gerum, Richard, Metzner, Claus, Tziridis, Konstantin, Maier, Andreas, Schulze, Holger, Zeng, Fan-Gang, Friston, Karl J, Krauss, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4825
container_issue 12
container_start_page 4809
container_title Brain (London, England : 1878)
container_volume 146
creator Schilling, Achim
Sedley, William
Gerum, Richard
Metzner, Claus
Tziridis, Konstantin
Maier, Andreas
Schulze, Holger
Zeng, Fan-Gang
Friston, Karl J
Krauss, Patrick
description Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques.
doi_str_mv 10.1093/brain/awad255
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2854426498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854426498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-f593f0f900b2eb899dddbbf502bbebc11232dc3353825e7d16a594e863f853583</originalsourceid><addsrcrecordid>eNo90DtPwzAUhmELgWgpjKzII0uoL3GajKjiJlWCAebIl2NqlNjBdkD997S0MJ3l0SedF6FLSm4oafhcRen8XH5Lw4Q4QlNaVqRgVFTHaEoIqYq6EWSCzlL6IISWnFWnaMIXgvAFE1OkXyIYp7P7AqyDcf4dS29wykGvZcpO4wgpeOk1YJmwHb2RPfgsOzxE57UbOkg4WCxH43KIGzyspc-hxwNEDUN2wZ-jEyu7BBeHO0Nv93evy8di9fzwtLxdFZpzlgsrGm6JbQhRDFTdNMYYpawgTClQmlLGmdlSwWsmYGFoJUVTQl1xWwsuaj5D1_vdIYbPEVJue5c0dJ30EMbUslqUJavKZkeLPdUxpBTBtttvehk3LSXtrmv727U9dN36q8P0qHow__ovJP8BBa13ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854426498</pqid></control><display><type>article</type><title>Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Schilling, Achim ; Sedley, William ; Gerum, Richard ; Metzner, Claus ; Tziridis, Konstantin ; Maier, Andreas ; Schulze, Holger ; Zeng, Fan-Gang ; Friston, Karl J ; Krauss, Patrick</creator><creatorcontrib>Schilling, Achim ; Sedley, William ; Gerum, Richard ; Metzner, Claus ; Tziridis, Konstantin ; Maier, Andreas ; Schulze, Holger ; Zeng, Fan-Gang ; Friston, Karl J ; Krauss, Patrick</creatorcontrib><description>Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques.</description><identifier>ISSN: 0006-8950</identifier><identifier>ISSN: 1460-2156</identifier><identifier>EISSN: 1460-2156</identifier><identifier>DOI: 10.1093/brain/awad255</identifier><identifier>PMID: 37503725</identifier><language>eng</language><publisher>England</publisher><subject>Artificial Intelligence ; Auditory Pathways ; Auditory Perception ; Bayes Theorem ; Hearing Loss ; Humans ; Tinnitus - psychology</subject><ispartof>Brain (London, England : 1878), 2023-12, Vol.146 (12), p.4809-4825</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-f593f0f900b2eb899dddbbf502bbebc11232dc3353825e7d16a594e863f853583</citedby><cites>FETCH-LOGICAL-c332t-f593f0f900b2eb899dddbbf502bbebc11232dc3353825e7d16a594e863f853583</cites><orcidid>0000-0001-7984-8909 ; 0000-0001-9543-305X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37503725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schilling, Achim</creatorcontrib><creatorcontrib>Sedley, William</creatorcontrib><creatorcontrib>Gerum, Richard</creatorcontrib><creatorcontrib>Metzner, Claus</creatorcontrib><creatorcontrib>Tziridis, Konstantin</creatorcontrib><creatorcontrib>Maier, Andreas</creatorcontrib><creatorcontrib>Schulze, Holger</creatorcontrib><creatorcontrib>Zeng, Fan-Gang</creatorcontrib><creatorcontrib>Friston, Karl J</creatorcontrib><creatorcontrib>Krauss, Patrick</creatorcontrib><title>Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception</title><title>Brain (London, England : 1878)</title><addtitle>Brain</addtitle><description>Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques.</description><subject>Artificial Intelligence</subject><subject>Auditory Pathways</subject><subject>Auditory Perception</subject><subject>Bayes Theorem</subject><subject>Hearing Loss</subject><subject>Humans</subject><subject>Tinnitus - psychology</subject><issn>0006-8950</issn><issn>1460-2156</issn><issn>1460-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90DtPwzAUhmELgWgpjKzII0uoL3GajKjiJlWCAebIl2NqlNjBdkD997S0MJ3l0SedF6FLSm4oafhcRen8XH5Lw4Q4QlNaVqRgVFTHaEoIqYq6EWSCzlL6IISWnFWnaMIXgvAFE1OkXyIYp7P7AqyDcf4dS29wykGvZcpO4wgpeOk1YJmwHb2RPfgsOzxE57UbOkg4WCxH43KIGzyspc-hxwNEDUN2wZ-jEyu7BBeHO0Nv93evy8di9fzwtLxdFZpzlgsrGm6JbQhRDFTdNMYYpawgTClQmlLGmdlSwWsmYGFoJUVTQl1xWwsuaj5D1_vdIYbPEVJue5c0dJ30EMbUslqUJavKZkeLPdUxpBTBtttvehk3LSXtrmv727U9dN36q8P0qHow__ovJP8BBa13ug</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Schilling, Achim</creator><creator>Sedley, William</creator><creator>Gerum, Richard</creator><creator>Metzner, Claus</creator><creator>Tziridis, Konstantin</creator><creator>Maier, Andreas</creator><creator>Schulze, Holger</creator><creator>Zeng, Fan-Gang</creator><creator>Friston, Karl J</creator><creator>Krauss, Patrick</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7984-8909</orcidid><orcidid>https://orcid.org/0000-0001-9543-305X</orcidid></search><sort><creationdate>20231201</creationdate><title>Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception</title><author>Schilling, Achim ; Sedley, William ; Gerum, Richard ; Metzner, Claus ; Tziridis, Konstantin ; Maier, Andreas ; Schulze, Holger ; Zeng, Fan-Gang ; Friston, Karl J ; Krauss, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-f593f0f900b2eb899dddbbf502bbebc11232dc3353825e7d16a594e863f853583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Auditory Pathways</topic><topic>Auditory Perception</topic><topic>Bayes Theorem</topic><topic>Hearing Loss</topic><topic>Humans</topic><topic>Tinnitus - psychology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schilling, Achim</creatorcontrib><creatorcontrib>Sedley, William</creatorcontrib><creatorcontrib>Gerum, Richard</creatorcontrib><creatorcontrib>Metzner, Claus</creatorcontrib><creatorcontrib>Tziridis, Konstantin</creatorcontrib><creatorcontrib>Maier, Andreas</creatorcontrib><creatorcontrib>Schulze, Holger</creatorcontrib><creatorcontrib>Zeng, Fan-Gang</creatorcontrib><creatorcontrib>Friston, Karl J</creatorcontrib><creatorcontrib>Krauss, Patrick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Brain (London, England : 1878)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schilling, Achim</au><au>Sedley, William</au><au>Gerum, Richard</au><au>Metzner, Claus</au><au>Tziridis, Konstantin</au><au>Maier, Andreas</au><au>Schulze, Holger</au><au>Zeng, Fan-Gang</au><au>Friston, Karl J</au><au>Krauss, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception</atitle><jtitle>Brain (London, England : 1878)</jtitle><addtitle>Brain</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>146</volume><issue>12</issue><spage>4809</spage><epage>4825</epage><pages>4809-4825</pages><issn>0006-8950</issn><issn>1460-2156</issn><eissn>1460-2156</eissn><abstract>Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques.</abstract><cop>England</cop><pmid>37503725</pmid><doi>10.1093/brain/awad255</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7984-8909</orcidid><orcidid>https://orcid.org/0000-0001-9543-305X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8950
ispartof Brain (London, England : 1878), 2023-12, Vol.146 (12), p.4809-4825
issn 0006-8950
1460-2156
1460-2156
language eng
recordid cdi_proquest_miscellaneous_2854426498
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Artificial Intelligence
Auditory Pathways
Auditory Perception
Bayes Theorem
Hearing Loss
Humans
Tinnitus - psychology
title Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20coding%20and%20stochastic%20resonance%20as%20fundamental%20principles%20of%20auditory%20phantom%20perception&rft.jtitle=Brain%20(London,%20England%20:%201878)&rft.au=Schilling,%20Achim&rft.date=2023-12-01&rft.volume=146&rft.issue=12&rft.spage=4809&rft.epage=4825&rft.pages=4809-4825&rft.issn=0006-8950&rft.eissn=1460-2156&rft_id=info:doi/10.1093/brain/awad255&rft_dat=%3Cproquest_cross%3E2854426498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854426498&rft_id=info:pmid/37503725&rfr_iscdi=true