Molecular machines stimulate intercellular calcium waves and cause muscle contraction

Intercellular calcium waves (ICW) are complex signalling phenomena that control many essential biological activities, including smooth muscle contraction, vesicle secretion, gene expression and changes in neuronal excitability. Accordingly, the remote stimulation of ICW could result in versatile bio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2023-09, Vol.18 (9), p.1051-1059
Hauptverfasser: Beckham, Jacob L., van Venrooy, Alexis R., Kim, Soonyoung, Li, Gang, Li, Bowen, Duret, Guillaume, Arnold, Dallin, Zhao, Xuan, Li, John T., Santos, Ana L., Chaudhry, Gautam, Liu, Dongdong, Robinson, Jacob T., Tour, James M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1059
container_issue 9
container_start_page 1051
container_title Nature nanotechnology
container_volume 18
creator Beckham, Jacob L.
van Venrooy, Alexis R.
Kim, Soonyoung
Li, Gang
Li, Bowen
Duret, Guillaume
Arnold, Dallin
Zhao, Xuan
Li, John T.
Santos, Ana L.
Chaudhry, Gautam
Liu, Dongdong
Robinson, Jacob T.
Tour, James M.
description Intercellular calcium waves (ICW) are complex signalling phenomena that control many essential biological activities, including smooth muscle contraction, vesicle secretion, gene expression and changes in neuronal excitability. Accordingly, the remote stimulation of ICW could result in versatile biomodulation and therapeutic strategies. Here we demonstrate that light-activated molecular machines (MM)—molecules that perform mechanical work on the molecular scale—can remotely stimulate ICW. MM consist of a polycyclic rotor and stator that rotate around a central alkene when activated with visible light. Live-cell calcium-tracking and pharmacological experiments reveal that MM-induced ICW are driven by the activation of inositol-triphosphate-mediated signalling pathways by unidirectional, fast-rotating MM. Our data suggest that MM-induced ICW can control muscle contraction in vitro in cardiomyocytes and animal behaviour in vivo in Hydra vulgaris . This work demonstrates a strategy for directly controlling cell signalling and downstream biological function using molecular-scale devices. Intercellular calcium waves drive numerous biological processes. Here light-activated molecular machines that—via nanomechanical action—stimulate ICW are reported, opening up avenues for the modulation of downstream biological processes using molecular-scale devices.
doi_str_mv 10.1038/s41565-023-01436-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2854424627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864705562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-fc12e516d41fa0c72a54e8d87e7ec401feec9e2c7964e6dbc4bd3e4f96bc4b003</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQJDZsAn47WaKKl1TEhq4t15lAqjyKHVPx97hNKRILVh6Nz1yPD0LnBF8TzLIbz4mQIsWUpZhwJtP1ARoTxbOUsVwc7utMjdCJ90uMBc0pP0YjpjjDmKkxmj93NdhQG5c0xr5XLfjE91UTOz0kVduDs1DXW8Ca2lahSdbmM1KmLWIneEia4G0Nie3a3hnbV117io5KU3s4250TNL-_e50-prOXh6fp7Sy1nOR9WlpCQRBZcFIabBU1gkNWZAoUWI5JCWBzoFblkoMsFpYvCga8zOWmjB-YoKshd-W6jwC-103lN_uaFrrgNc0E55RLqiJ6-QdddsG1cbtISa6wEJJGig6UdZ33Dkq9clVj3JcmWG-k60G6jtL1Vrpex6GLXXRYNFDsR34sR4ANgI9X7Ru437f_if0GfECPBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864705562</pqid></control><display><type>article</type><title>Molecular machines stimulate intercellular calcium waves and cause muscle contraction</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Beckham, Jacob L. ; van Venrooy, Alexis R. ; Kim, Soonyoung ; Li, Gang ; Li, Bowen ; Duret, Guillaume ; Arnold, Dallin ; Zhao, Xuan ; Li, John T. ; Santos, Ana L. ; Chaudhry, Gautam ; Liu, Dongdong ; Robinson, Jacob T. ; Tour, James M.</creator><creatorcontrib>Beckham, Jacob L. ; van Venrooy, Alexis R. ; Kim, Soonyoung ; Li, Gang ; Li, Bowen ; Duret, Guillaume ; Arnold, Dallin ; Zhao, Xuan ; Li, John T. ; Santos, Ana L. ; Chaudhry, Gautam ; Liu, Dongdong ; Robinson, Jacob T. ; Tour, James M.</creatorcontrib><description>Intercellular calcium waves (ICW) are complex signalling phenomena that control many essential biological activities, including smooth muscle contraction, vesicle secretion, gene expression and changes in neuronal excitability. Accordingly, the remote stimulation of ICW could result in versatile biomodulation and therapeutic strategies. Here we demonstrate that light-activated molecular machines (MM)—molecules that perform mechanical work on the molecular scale—can remotely stimulate ICW. MM consist of a polycyclic rotor and stator that rotate around a central alkene when activated with visible light. Live-cell calcium-tracking and pharmacological experiments reveal that MM-induced ICW are driven by the activation of inositol-triphosphate-mediated signalling pathways by unidirectional, fast-rotating MM. Our data suggest that MM-induced ICW can control muscle contraction in vitro in cardiomyocytes and animal behaviour in vivo in Hydra vulgaris . This work demonstrates a strategy for directly controlling cell signalling and downstream biological function using molecular-scale devices. Intercellular calcium waves drive numerous biological processes. Here light-activated molecular machines that—via nanomechanical action—stimulate ICW are reported, opening up avenues for the modulation of downstream biological processes using molecular-scale devices.</description><identifier>ISSN: 1748-3387</identifier><identifier>ISSN: 1748-3395</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-023-01436-w</identifier><identifier>PMID: 37430037</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/350/1057 ; 639/925/350 ; Biological activity ; Calcium ; Calcium signalling ; Cardiomyocytes ; Chemistry and Materials Science ; Excitability ; Gene expression ; Inositols ; Materials Science ; Molecular machines ; Muscle contraction ; Muscles ; Muscular function ; Nanotechnology ; Nanotechnology and Microengineering ; Signal transduction ; Smooth muscle</subject><ispartof>Nature nanotechnology, 2023-09, Vol.18 (9), p.1051-1059</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-fc12e516d41fa0c72a54e8d87e7ec401feec9e2c7964e6dbc4bd3e4f96bc4b003</citedby><cites>FETCH-LOGICAL-c419t-fc12e516d41fa0c72a54e8d87e7ec401feec9e2c7964e6dbc4bd3e4f96bc4b003</cites><orcidid>0000-0003-1660-5605 ; 0000-0002-3509-3054 ; 0000-0002-5450-9414 ; 0000-0003-2240-9846 ; 0000-0002-8479-9328 ; 0000-0002-7218-8298 ; 0000-0002-2787-3712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-023-01436-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-023-01436-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37430037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beckham, Jacob L.</creatorcontrib><creatorcontrib>van Venrooy, Alexis R.</creatorcontrib><creatorcontrib>Kim, Soonyoung</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Li, Bowen</creatorcontrib><creatorcontrib>Duret, Guillaume</creatorcontrib><creatorcontrib>Arnold, Dallin</creatorcontrib><creatorcontrib>Zhao, Xuan</creatorcontrib><creatorcontrib>Li, John T.</creatorcontrib><creatorcontrib>Santos, Ana L.</creatorcontrib><creatorcontrib>Chaudhry, Gautam</creatorcontrib><creatorcontrib>Liu, Dongdong</creatorcontrib><creatorcontrib>Robinson, Jacob T.</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><title>Molecular machines stimulate intercellular calcium waves and cause muscle contraction</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Intercellular calcium waves (ICW) are complex signalling phenomena that control many essential biological activities, including smooth muscle contraction, vesicle secretion, gene expression and changes in neuronal excitability. Accordingly, the remote stimulation of ICW could result in versatile biomodulation and therapeutic strategies. Here we demonstrate that light-activated molecular machines (MM)—molecules that perform mechanical work on the molecular scale—can remotely stimulate ICW. MM consist of a polycyclic rotor and stator that rotate around a central alkene when activated with visible light. Live-cell calcium-tracking and pharmacological experiments reveal that MM-induced ICW are driven by the activation of inositol-triphosphate-mediated signalling pathways by unidirectional, fast-rotating MM. Our data suggest that MM-induced ICW can control muscle contraction in vitro in cardiomyocytes and animal behaviour in vivo in Hydra vulgaris . This work demonstrates a strategy for directly controlling cell signalling and downstream biological function using molecular-scale devices. Intercellular calcium waves drive numerous biological processes. Here light-activated molecular machines that—via nanomechanical action—stimulate ICW are reported, opening up avenues for the modulation of downstream biological processes using molecular-scale devices.</description><subject>631/61/350/1057</subject><subject>639/925/350</subject><subject>Biological activity</subject><subject>Calcium</subject><subject>Calcium signalling</subject><subject>Cardiomyocytes</subject><subject>Chemistry and Materials Science</subject><subject>Excitability</subject><subject>Gene expression</subject><subject>Inositols</subject><subject>Materials Science</subject><subject>Molecular machines</subject><subject>Muscle contraction</subject><subject>Muscles</subject><subject>Muscular function</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Signal transduction</subject><subject>Smooth muscle</subject><issn>1748-3387</issn><issn>1748-3395</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyxQJDZsAn47WaKKl1TEhq4t15lAqjyKHVPx97hNKRILVh6Nz1yPD0LnBF8TzLIbz4mQIsWUpZhwJtP1ARoTxbOUsVwc7utMjdCJ90uMBc0pP0YjpjjDmKkxmj93NdhQG5c0xr5XLfjE91UTOz0kVduDs1DXW8Ca2lahSdbmM1KmLWIneEia4G0Nie3a3hnbV117io5KU3s4250TNL-_e50-prOXh6fp7Sy1nOR9WlpCQRBZcFIabBU1gkNWZAoUWI5JCWBzoFblkoMsFpYvCga8zOWmjB-YoKshd-W6jwC-103lN_uaFrrgNc0E55RLqiJ6-QdddsG1cbtISa6wEJJGig6UdZ33Dkq9clVj3JcmWG-k60G6jtL1Vrpex6GLXXRYNFDsR34sR4ANgI9X7Ru437f_if0GfECPBA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Beckham, Jacob L.</creator><creator>van Venrooy, Alexis R.</creator><creator>Kim, Soonyoung</creator><creator>Li, Gang</creator><creator>Li, Bowen</creator><creator>Duret, Guillaume</creator><creator>Arnold, Dallin</creator><creator>Zhao, Xuan</creator><creator>Li, John T.</creator><creator>Santos, Ana L.</creator><creator>Chaudhry, Gautam</creator><creator>Liu, Dongdong</creator><creator>Robinson, Jacob T.</creator><creator>Tour, James M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1660-5605</orcidid><orcidid>https://orcid.org/0000-0002-3509-3054</orcidid><orcidid>https://orcid.org/0000-0002-5450-9414</orcidid><orcidid>https://orcid.org/0000-0003-2240-9846</orcidid><orcidid>https://orcid.org/0000-0002-8479-9328</orcidid><orcidid>https://orcid.org/0000-0002-7218-8298</orcidid><orcidid>https://orcid.org/0000-0002-2787-3712</orcidid></search><sort><creationdate>20230901</creationdate><title>Molecular machines stimulate intercellular calcium waves and cause muscle contraction</title><author>Beckham, Jacob L. ; van Venrooy, Alexis R. ; Kim, Soonyoung ; Li, Gang ; Li, Bowen ; Duret, Guillaume ; Arnold, Dallin ; Zhao, Xuan ; Li, John T. ; Santos, Ana L. ; Chaudhry, Gautam ; Liu, Dongdong ; Robinson, Jacob T. ; Tour, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-fc12e516d41fa0c72a54e8d87e7ec401feec9e2c7964e6dbc4bd3e4f96bc4b003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/61/350/1057</topic><topic>639/925/350</topic><topic>Biological activity</topic><topic>Calcium</topic><topic>Calcium signalling</topic><topic>Cardiomyocytes</topic><topic>Chemistry and Materials Science</topic><topic>Excitability</topic><topic>Gene expression</topic><topic>Inositols</topic><topic>Materials Science</topic><topic>Molecular machines</topic><topic>Muscle contraction</topic><topic>Muscles</topic><topic>Muscular function</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Signal transduction</topic><topic>Smooth muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beckham, Jacob L.</creatorcontrib><creatorcontrib>van Venrooy, Alexis R.</creatorcontrib><creatorcontrib>Kim, Soonyoung</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Li, Bowen</creatorcontrib><creatorcontrib>Duret, Guillaume</creatorcontrib><creatorcontrib>Arnold, Dallin</creatorcontrib><creatorcontrib>Zhao, Xuan</creatorcontrib><creatorcontrib>Li, John T.</creatorcontrib><creatorcontrib>Santos, Ana L.</creatorcontrib><creatorcontrib>Chaudhry, Gautam</creatorcontrib><creatorcontrib>Liu, Dongdong</creatorcontrib><creatorcontrib>Robinson, Jacob T.</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beckham, Jacob L.</au><au>van Venrooy, Alexis R.</au><au>Kim, Soonyoung</au><au>Li, Gang</au><au>Li, Bowen</au><au>Duret, Guillaume</au><au>Arnold, Dallin</au><au>Zhao, Xuan</au><au>Li, John T.</au><au>Santos, Ana L.</au><au>Chaudhry, Gautam</au><au>Liu, Dongdong</au><au>Robinson, Jacob T.</au><au>Tour, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular machines stimulate intercellular calcium waves and cause muscle contraction</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>18</volume><issue>9</issue><spage>1051</spage><epage>1059</epage><pages>1051-1059</pages><issn>1748-3387</issn><issn>1748-3395</issn><eissn>1748-3395</eissn><abstract>Intercellular calcium waves (ICW) are complex signalling phenomena that control many essential biological activities, including smooth muscle contraction, vesicle secretion, gene expression and changes in neuronal excitability. Accordingly, the remote stimulation of ICW could result in versatile biomodulation and therapeutic strategies. Here we demonstrate that light-activated molecular machines (MM)—molecules that perform mechanical work on the molecular scale—can remotely stimulate ICW. MM consist of a polycyclic rotor and stator that rotate around a central alkene when activated with visible light. Live-cell calcium-tracking and pharmacological experiments reveal that MM-induced ICW are driven by the activation of inositol-triphosphate-mediated signalling pathways by unidirectional, fast-rotating MM. Our data suggest that MM-induced ICW can control muscle contraction in vitro in cardiomyocytes and animal behaviour in vivo in Hydra vulgaris . This work demonstrates a strategy for directly controlling cell signalling and downstream biological function using molecular-scale devices. Intercellular calcium waves drive numerous biological processes. Here light-activated molecular machines that—via nanomechanical action—stimulate ICW are reported, opening up avenues for the modulation of downstream biological processes using molecular-scale devices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37430037</pmid><doi>10.1038/s41565-023-01436-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1660-5605</orcidid><orcidid>https://orcid.org/0000-0002-3509-3054</orcidid><orcidid>https://orcid.org/0000-0002-5450-9414</orcidid><orcidid>https://orcid.org/0000-0003-2240-9846</orcidid><orcidid>https://orcid.org/0000-0002-8479-9328</orcidid><orcidid>https://orcid.org/0000-0002-7218-8298</orcidid><orcidid>https://orcid.org/0000-0002-2787-3712</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2023-09, Vol.18 (9), p.1051-1059
issn 1748-3387
1748-3395
1748-3395
language eng
recordid cdi_proquest_miscellaneous_2854424627
source Springer Nature - Complete Springer Journals; Nature
subjects 631/61/350/1057
639/925/350
Biological activity
Calcium
Calcium signalling
Cardiomyocytes
Chemistry and Materials Science
Excitability
Gene expression
Inositols
Materials Science
Molecular machines
Muscle contraction
Muscles
Muscular function
Nanotechnology
Nanotechnology and Microengineering
Signal transduction
Smooth muscle
title Molecular machines stimulate intercellular calcium waves and cause muscle contraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20machines%20stimulate%20intercellular%20calcium%20waves%20and%20cause%20muscle%20contraction&rft.jtitle=Nature%20nanotechnology&rft.au=Beckham,%20Jacob%20L.&rft.date=2023-09-01&rft.volume=18&rft.issue=9&rft.spage=1051&rft.epage=1059&rft.pages=1051-1059&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-023-01436-w&rft_dat=%3Cproquest_cross%3E2864705562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864705562&rft_id=info:pmid/37430037&rfr_iscdi=true