Impact of magnetic resonance imaging-related geometric distortion of dose distribution in fractionated stereotactic radiotherapy in patients with brain metastases

Purpose The geometric distortion related to magnetic resonance (MR) imaging in a diagnostic radiology (MR DR ) and radiotherapy (MR RT ) setup is evaluated, and the dosimetric impact of MR distortion on fractionated stereotactic radiotherapy (FSRT) in patients with brain metastases is simulated. Mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Strahlentherapie und Onkologie 2024, Vol.200 (1), p.39-48
Hauptverfasser: Ohira, Shingo, Suzuki, Yuta, Washio, Hayate, Yamamoto, Yuki, Tateishi, Soichiro, Inui, Shoki, Kanayama, Naoyuki, Kawamata, Minoru, Miyazaki, Masayoshi, Nishio, Teiji, Koizumi, Masahiko, Nakanishi, Katsuyuki, Konishi, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 39
container_title Strahlentherapie und Onkologie
container_volume 200
creator Ohira, Shingo
Suzuki, Yuta
Washio, Hayate
Yamamoto, Yuki
Tateishi, Soichiro
Inui, Shoki
Kanayama, Naoyuki
Kawamata, Minoru
Miyazaki, Masayoshi
Nishio, Teiji
Koizumi, Masahiko
Nakanishi, Katsuyuki
Konishi, Koji
description Purpose The geometric distortion related to magnetic resonance (MR) imaging in a diagnostic radiology (MR DR ) and radiotherapy (MR RT ) setup is evaluated, and the dosimetric impact of MR distortion on fractionated stereotactic radiotherapy (FSRT) in patients with brain metastases is simulated. Materials and methods An anthropomorphic skull phantom was scanned using a 1.5‑T MR scanner, and the magnitude of MR distortion was calculated with (MR DR -DC and MR RT -DC) and without (MR DR -nDC and MR RT -nDC) distortion-correction algorithms. Automated noncoplanar volumetric modulated arc therapy (HyperArc, HA; Varian Medical Systems, Palo Alto, CA, USA) plans were generated for 53 patients with 186 brain metastases. The MR distortion at each gross tumor volume (GTV) was calculated using the distance between the center of the GTV and the MR image isocenter (MIC) and the quadratic regression curve derived from the phantom study (MR RT -DC and MR RT -nDC). Subsequently, the radiation isocenter of the HA plans was shifted according to the MR distortion at each GTV (HA DC and HA nDC ). Results The median MR distortions were approximately 0.1 mm when the distance from the MIC was  60 mm (0.23, 0.47, 0.37, and 0.57 mm in MR DR -DC, MR DR -nDC, MR RT -DC, and MR RT -nDC, respectively). The dose to the 98% of the GTV volume (D 98% ) decreased as the distance from the MIC increased. In the HA DC plans, the relative dose difference of D 98% was less than 5% when the GTV was located within 70 mm from the MIC, whereas the underdose of GTV exceeded 5% when it was 48 mm (−26.5% at maximum) away from the MIC in the HA nDC plans. Conclusion Use of a distortion-correction algorithm in the studied MR diagnoses is essential, and the dosimetric impact of MR distortion is not negligible, particularly for tumors located far away from the MIC.
doi_str_mv 10.1007/s00066-023-02120-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2853940751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913260218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-37cef4af65b4a1735d28cc80689d3a57bdac5af9010194811067c7f2345349a43</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhkVpaDZpX6CHYuilFzcjS7asYwlpGwj00kBuQpbHG4W15EoyJa_TJ-3sbppCDwUJiV_fPzPoZ-wth48cQF1kAOi6GhpBmzdQqxdsw6XQNWh995JtgCtdK972p-ws5wcA3kktX7FToVrNteo37Nf1vFhXqjhVs90GLN5VCXMMNjisPGk-bOuEO1twrLYYZyyJmNHnElPxMeytY8x4kJIf1oPoQzUlKkz3gzMXTBjLXqEGdvSx3GOyy-OeXGzxGEqufvpyXw3JkkZ9bKaF-TU7mewu45un85zdfr76fvm1vvn25fry003tRNOVWiiHk7RT1w7SciXasemd66Hr9Shsq4bRutZOGjhwLXvOoVNOTY2QrZDaSnHOPhzrLin-WDEXM_vscLezAeOaTdO3QktQLSf0_T_oQ1xToOlMozmNQ3n0RDVHyqWYc8LJLIl-ND0aDmafoDkmaChBc0jQKDK9eyq9DjOOz5Y_kREgjkCmp7DF9Lf3f8r-BtGvqkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913260218</pqid></control><display><type>article</type><title>Impact of magnetic resonance imaging-related geometric distortion of dose distribution in fractionated stereotactic radiotherapy in patients with brain metastases</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ohira, Shingo ; Suzuki, Yuta ; Washio, Hayate ; Yamamoto, Yuki ; Tateishi, Soichiro ; Inui, Shoki ; Kanayama, Naoyuki ; Kawamata, Minoru ; Miyazaki, Masayoshi ; Nishio, Teiji ; Koizumi, Masahiko ; Nakanishi, Katsuyuki ; Konishi, Koji</creator><creatorcontrib>Ohira, Shingo ; Suzuki, Yuta ; Washio, Hayate ; Yamamoto, Yuki ; Tateishi, Soichiro ; Inui, Shoki ; Kanayama, Naoyuki ; Kawamata, Minoru ; Miyazaki, Masayoshi ; Nishio, Teiji ; Koizumi, Masahiko ; Nakanishi, Katsuyuki ; Konishi, Koji</creatorcontrib><description>Purpose The geometric distortion related to magnetic resonance (MR) imaging in a diagnostic radiology (MR DR ) and radiotherapy (MR RT ) setup is evaluated, and the dosimetric impact of MR distortion on fractionated stereotactic radiotherapy (FSRT) in patients with brain metastases is simulated. Materials and methods An anthropomorphic skull phantom was scanned using a 1.5‑T MR scanner, and the magnitude of MR distortion was calculated with (MR DR -DC and MR RT -DC) and without (MR DR -nDC and MR RT -nDC) distortion-correction algorithms. Automated noncoplanar volumetric modulated arc therapy (HyperArc, HA; Varian Medical Systems, Palo Alto, CA, USA) plans were generated for 53 patients with 186 brain metastases. The MR distortion at each gross tumor volume (GTV) was calculated using the distance between the center of the GTV and the MR image isocenter (MIC) and the quadratic regression curve derived from the phantom study (MR RT -DC and MR RT -nDC). Subsequently, the radiation isocenter of the HA plans was shifted according to the MR distortion at each GTV (HA DC and HA nDC ). Results The median MR distortions were approximately 0.1 mm when the distance from the MIC was &lt; 30 mm, whereas the median distortion varied widely when the distance was &gt; 60 mm (0.23, 0.47, 0.37, and 0.57 mm in MR DR -DC, MR DR -nDC, MR RT -DC, and MR RT -nDC, respectively). The dose to the 98% of the GTV volume (D 98% ) decreased as the distance from the MIC increased. In the HA DC plans, the relative dose difference of D 98% was less than 5% when the GTV was located within 70 mm from the MIC, whereas the underdose of GTV exceeded 5% when it was 48 mm (−26.5% at maximum) away from the MIC in the HA nDC plans. Conclusion Use of a distortion-correction algorithm in the studied MR diagnoses is essential, and the dosimetric impact of MR distortion is not negligible, particularly for tumors located far away from the MIC.</description><identifier>ISSN: 0179-7158</identifier><identifier>EISSN: 1439-099X</identifier><identifier>DOI: 10.1007/s00066-023-02120-7</identifier><identifier>PMID: 37591978</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Brain ; Brain cancer ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - radiotherapy ; Brain Neoplasms - secondary ; Distortion ; Humans ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mathematical analysis ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Metastasis ; Oncology ; Original Article ; Radiation therapy ; Radiosurgery - methods ; Radiotherapy ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Tumors</subject><ispartof>Strahlentherapie und Onkologie, 2024, Vol.200 (1), p.39-48</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-37cef4af65b4a1735d28cc80689d3a57bdac5af9010194811067c7f2345349a43</cites><orcidid>0000-0002-6170-1471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00066-023-02120-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00066-023-02120-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37591978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohira, Shingo</creatorcontrib><creatorcontrib>Suzuki, Yuta</creatorcontrib><creatorcontrib>Washio, Hayate</creatorcontrib><creatorcontrib>Yamamoto, Yuki</creatorcontrib><creatorcontrib>Tateishi, Soichiro</creatorcontrib><creatorcontrib>Inui, Shoki</creatorcontrib><creatorcontrib>Kanayama, Naoyuki</creatorcontrib><creatorcontrib>Kawamata, Minoru</creatorcontrib><creatorcontrib>Miyazaki, Masayoshi</creatorcontrib><creatorcontrib>Nishio, Teiji</creatorcontrib><creatorcontrib>Koizumi, Masahiko</creatorcontrib><creatorcontrib>Nakanishi, Katsuyuki</creatorcontrib><creatorcontrib>Konishi, Koji</creatorcontrib><title>Impact of magnetic resonance imaging-related geometric distortion of dose distribution in fractionated stereotactic radiotherapy in patients with brain metastases</title><title>Strahlentherapie und Onkologie</title><addtitle>Strahlenther Onkol</addtitle><addtitle>Strahlenther Onkol</addtitle><description>Purpose The geometric distortion related to magnetic resonance (MR) imaging in a diagnostic radiology (MR DR ) and radiotherapy (MR RT ) setup is evaluated, and the dosimetric impact of MR distortion on fractionated stereotactic radiotherapy (FSRT) in patients with brain metastases is simulated. Materials and methods An anthropomorphic skull phantom was scanned using a 1.5‑T MR scanner, and the magnitude of MR distortion was calculated with (MR DR -DC and MR RT -DC) and without (MR DR -nDC and MR RT -nDC) distortion-correction algorithms. Automated noncoplanar volumetric modulated arc therapy (HyperArc, HA; Varian Medical Systems, Palo Alto, CA, USA) plans were generated for 53 patients with 186 brain metastases. The MR distortion at each gross tumor volume (GTV) was calculated using the distance between the center of the GTV and the MR image isocenter (MIC) and the quadratic regression curve derived from the phantom study (MR RT -DC and MR RT -nDC). Subsequently, the radiation isocenter of the HA plans was shifted according to the MR distortion at each GTV (HA DC and HA nDC ). Results The median MR distortions were approximately 0.1 mm when the distance from the MIC was &lt; 30 mm, whereas the median distortion varied widely when the distance was &gt; 60 mm (0.23, 0.47, 0.37, and 0.57 mm in MR DR -DC, MR DR -nDC, MR RT -DC, and MR RT -nDC, respectively). The dose to the 98% of the GTV volume (D 98% ) decreased as the distance from the MIC increased. In the HA DC plans, the relative dose difference of D 98% was less than 5% when the GTV was located within 70 mm from the MIC, whereas the underdose of GTV exceeded 5% when it was 48 mm (−26.5% at maximum) away from the MIC in the HA nDC plans. Conclusion Use of a distortion-correction algorithm in the studied MR diagnoses is essential, and the dosimetric impact of MR distortion is not negligible, particularly for tumors located far away from the MIC.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - radiotherapy</subject><subject>Brain Neoplasms - secondary</subject><subject>Distortion</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metastasis</subject><subject>Oncology</subject><subject>Original Article</subject><subject>Radiation therapy</subject><subject>Radiosurgery - methods</subject><subject>Radiotherapy</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Tumors</subject><issn>0179-7158</issn><issn>1439-099X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kcFq3DAQhkVpaDZpX6CHYuilFzcjS7asYwlpGwj00kBuQpbHG4W15EoyJa_TJ-3sbppCDwUJiV_fPzPoZ-wth48cQF1kAOi6GhpBmzdQqxdsw6XQNWh995JtgCtdK972p-ws5wcA3kktX7FToVrNteo37Nf1vFhXqjhVs90GLN5VCXMMNjisPGk-bOuEO1twrLYYZyyJmNHnElPxMeytY8x4kJIf1oPoQzUlKkz3gzMXTBjLXqEGdvSx3GOyy-OeXGzxGEqufvpyXw3JkkZ9bKaF-TU7mewu45un85zdfr76fvm1vvn25fry003tRNOVWiiHk7RT1w7SciXasemd66Hr9Shsq4bRutZOGjhwLXvOoVNOTY2QrZDaSnHOPhzrLin-WDEXM_vscLezAeOaTdO3QktQLSf0_T_oQ1xToOlMozmNQ3n0RDVHyqWYc8LJLIl-ND0aDmafoDkmaChBc0jQKDK9eyq9DjOOz5Y_kREgjkCmp7DF9Lf3f8r-BtGvqkE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ohira, Shingo</creator><creator>Suzuki, Yuta</creator><creator>Washio, Hayate</creator><creator>Yamamoto, Yuki</creator><creator>Tateishi, Soichiro</creator><creator>Inui, Shoki</creator><creator>Kanayama, Naoyuki</creator><creator>Kawamata, Minoru</creator><creator>Miyazaki, Masayoshi</creator><creator>Nishio, Teiji</creator><creator>Koizumi, Masahiko</creator><creator>Nakanishi, Katsuyuki</creator><creator>Konishi, Koji</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6170-1471</orcidid></search><sort><creationdate>2024</creationdate><title>Impact of magnetic resonance imaging-related geometric distortion of dose distribution in fractionated stereotactic radiotherapy in patients with brain metastases</title><author>Ohira, Shingo ; Suzuki, Yuta ; Washio, Hayate ; Yamamoto, Yuki ; Tateishi, Soichiro ; Inui, Shoki ; Kanayama, Naoyuki ; Kawamata, Minoru ; Miyazaki, Masayoshi ; Nishio, Teiji ; Koizumi, Masahiko ; Nakanishi, Katsuyuki ; Konishi, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-37cef4af65b4a1735d28cc80689d3a57bdac5af9010194811067c7f2345349a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - radiotherapy</topic><topic>Brain Neoplasms - secondary</topic><topic>Distortion</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metastasis</topic><topic>Oncology</topic><topic>Original Article</topic><topic>Radiation therapy</topic><topic>Radiosurgery - methods</topic><topic>Radiotherapy</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohira, Shingo</creatorcontrib><creatorcontrib>Suzuki, Yuta</creatorcontrib><creatorcontrib>Washio, Hayate</creatorcontrib><creatorcontrib>Yamamoto, Yuki</creatorcontrib><creatorcontrib>Tateishi, Soichiro</creatorcontrib><creatorcontrib>Inui, Shoki</creatorcontrib><creatorcontrib>Kanayama, Naoyuki</creatorcontrib><creatorcontrib>Kawamata, Minoru</creatorcontrib><creatorcontrib>Miyazaki, Masayoshi</creatorcontrib><creatorcontrib>Nishio, Teiji</creatorcontrib><creatorcontrib>Koizumi, Masahiko</creatorcontrib><creatorcontrib>Nakanishi, Katsuyuki</creatorcontrib><creatorcontrib>Konishi, Koji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Strahlentherapie und Onkologie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohira, Shingo</au><au>Suzuki, Yuta</au><au>Washio, Hayate</au><au>Yamamoto, Yuki</au><au>Tateishi, Soichiro</au><au>Inui, Shoki</au><au>Kanayama, Naoyuki</au><au>Kawamata, Minoru</au><au>Miyazaki, Masayoshi</au><au>Nishio, Teiji</au><au>Koizumi, Masahiko</au><au>Nakanishi, Katsuyuki</au><au>Konishi, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of magnetic resonance imaging-related geometric distortion of dose distribution in fractionated stereotactic radiotherapy in patients with brain metastases</atitle><jtitle>Strahlentherapie und Onkologie</jtitle><stitle>Strahlenther Onkol</stitle><addtitle>Strahlenther Onkol</addtitle><date>2024</date><risdate>2024</risdate><volume>200</volume><issue>1</issue><spage>39</spage><epage>48</epage><pages>39-48</pages><issn>0179-7158</issn><eissn>1439-099X</eissn><abstract>Purpose The geometric distortion related to magnetic resonance (MR) imaging in a diagnostic radiology (MR DR ) and radiotherapy (MR RT ) setup is evaluated, and the dosimetric impact of MR distortion on fractionated stereotactic radiotherapy (FSRT) in patients with brain metastases is simulated. Materials and methods An anthropomorphic skull phantom was scanned using a 1.5‑T MR scanner, and the magnitude of MR distortion was calculated with (MR DR -DC and MR RT -DC) and without (MR DR -nDC and MR RT -nDC) distortion-correction algorithms. Automated noncoplanar volumetric modulated arc therapy (HyperArc, HA; Varian Medical Systems, Palo Alto, CA, USA) plans were generated for 53 patients with 186 brain metastases. The MR distortion at each gross tumor volume (GTV) was calculated using the distance between the center of the GTV and the MR image isocenter (MIC) and the quadratic regression curve derived from the phantom study (MR RT -DC and MR RT -nDC). Subsequently, the radiation isocenter of the HA plans was shifted according to the MR distortion at each GTV (HA DC and HA nDC ). Results The median MR distortions were approximately 0.1 mm when the distance from the MIC was &lt; 30 mm, whereas the median distortion varied widely when the distance was &gt; 60 mm (0.23, 0.47, 0.37, and 0.57 mm in MR DR -DC, MR DR -nDC, MR RT -DC, and MR RT -nDC, respectively). The dose to the 98% of the GTV volume (D 98% ) decreased as the distance from the MIC increased. In the HA DC plans, the relative dose difference of D 98% was less than 5% when the GTV was located within 70 mm from the MIC, whereas the underdose of GTV exceeded 5% when it was 48 mm (−26.5% at maximum) away from the MIC in the HA nDC plans. Conclusion Use of a distortion-correction algorithm in the studied MR diagnoses is essential, and the dosimetric impact of MR distortion is not negligible, particularly for tumors located far away from the MIC.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37591978</pmid><doi>10.1007/s00066-023-02120-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6170-1471</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0179-7158
ispartof Strahlentherapie und Onkologie, 2024, Vol.200 (1), p.39-48
issn 0179-7158
1439-099X
language eng
recordid cdi_proquest_miscellaneous_2853940751
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Algorithms
Brain
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - radiotherapy
Brain Neoplasms - secondary
Distortion
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mathematical analysis
Medical imaging
Medicine
Medicine & Public Health
Metastasis
Oncology
Original Article
Radiation therapy
Radiosurgery - methods
Radiotherapy
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Tumors
title Impact of magnetic resonance imaging-related geometric distortion of dose distribution in fractionated stereotactic radiotherapy in patients with brain metastases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20magnetic%20resonance%20imaging-related%20geometric%20distortion%20of%20dose%20distribution%20in%20fractionated%20stereotactic%20radiotherapy%20in%20patients%20with%20brain%20metastases&rft.jtitle=Strahlentherapie%20und%20Onkologie&rft.au=Ohira,%20Shingo&rft.date=2024&rft.volume=200&rft.issue=1&rft.spage=39&rft.epage=48&rft.pages=39-48&rft.issn=0179-7158&rft.eissn=1439-099X&rft_id=info:doi/10.1007/s00066-023-02120-7&rft_dat=%3Cproquest_cross%3E2913260218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913260218&rft_id=info:pmid/37591978&rfr_iscdi=true