A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics

In many biological processes, increasing the rate of transport of a limiting nutrient can enhance the rate of product formation. In aerobic fermentation systems, the rate of oxygen transfer to the cells is usually the limiting factor. A key factor that influences oxygen transfer is bubble size distr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2005, Vol.60 (1), p.213-218
Hauptverfasser: Dhanasekharan, Kumar M., Sanyal, Jay, Jain, Anupam, Haidari, Ahmad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 218
container_issue 1
container_start_page 213
container_title Chemical engineering science
container_volume 60
creator Dhanasekharan, Kumar M.
Sanyal, Jay
Jain, Anupam
Haidari, Ahmad
description In many biological processes, increasing the rate of transport of a limiting nutrient can enhance the rate of product formation. In aerobic fermentation systems, the rate of oxygen transfer to the cells is usually the limiting factor. A key factor that influences oxygen transfer is bubble size distribution. The bubble sizes dictate the available interfacial area for gas–liquid mass transfer. Scale-up and design of bioreactors must meet oxygen transfer requirements while maintaining low shear rates and a controlled flow pattern. This is the motivation for the current work that captures multiphase hydrodynamics and simultaneously predicts the bubble size distribution. Bubbles break up and coalesce due to interactions with turbulent eddies, giving rise to a distribution of bubble sizes. These effects are included in the modeling approach by solving a population balance model with bubble breakage and coalescence. The population balance model was coupled to multiphase flow equations and solved using a commercial computational fluid mechanics code FLUENT 6. Gas holdup and volumetric mass transfer coefficients were predicted for different superficial velocities and compared to the experimental results of Kawase and Hashimoto (1996). The modeling results showed good agreement with experiment.
doi_str_mv 10.1016/j.ces.2004.07.118
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28537165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250904005810</els_id><sourcerecordid>28537165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-d890a6059bd3d403f010f5ed2d41aa2948e0c956860b086e2d658f784d2881123</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhq2qSGwLD8DNF7gljJ04ccSpqmiLVKmXcrZm7UnrlRMHO0EsT4_LVuLGyRrNN-P5P8Y-CKgFiO7zobaUawnQ1tDXQugzthO6b6q2BXXOdgAwVFLB8JZd5HwoZd8L2LHjFX-imRIG_5scx2VJEe0zXyOfoqPA469jAfiacM4jJe5nvvcxEdo1psy37OcnvsRlC7j6WJoYcC63cJwdt3FatvVvAwMfw-Ydd8cZJ2_zO_ZmxJDp_et7yb7ffH28vqvuH26_XV_dV7YZ1Fo5PQB2oIa9a1wLzQgCRkVOulYgyqHVBHZQne5gD7oj6Tqlx163TmothGwu2afT3pLsx0Z5NZPPlkI5k-KWjdSq6UWnCihOoE0x50SjWZKfMB2NAPMi2RxMCWZeJBvoTZFcZj6-LsdsMYzFkvX532DXNkL2Q-G-nDgqSX96SiZbT8WT84nsalz0__nlDw4-k5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28537165</pqid></control><display><type>article</type><title>A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics</title><source>Elsevier ScienceDirect Journals</source><creator>Dhanasekharan, Kumar M. ; Sanyal, Jay ; Jain, Anupam ; Haidari, Ahmad</creator><creatorcontrib>Dhanasekharan, Kumar M. ; Sanyal, Jay ; Jain, Anupam ; Haidari, Ahmad</creatorcontrib><description>In many biological processes, increasing the rate of transport of a limiting nutrient can enhance the rate of product formation. In aerobic fermentation systems, the rate of oxygen transfer to the cells is usually the limiting factor. A key factor that influences oxygen transfer is bubble size distribution. The bubble sizes dictate the available interfacial area for gas–liquid mass transfer. Scale-up and design of bioreactors must meet oxygen transfer requirements while maintaining low shear rates and a controlled flow pattern. This is the motivation for the current work that captures multiphase hydrodynamics and simultaneously predicts the bubble size distribution. Bubbles break up and coalesce due to interactions with turbulent eddies, giving rise to a distribution of bubble sizes. These effects are included in the modeling approach by solving a population balance model with bubble breakage and coalescence. The population balance model was coupled to multiphase flow equations and solved using a commercial computational fluid mechanics code FLUENT 6. Gas holdup and volumetric mass transfer coefficients were predicted for different superficial velocities and compared to the experimental results of Kawase and Hashimoto (1996). The modeling results showed good agreement with experiment.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2004.07.118</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Airlift ; Applied sciences ; Biological and medical sciences ; Bioreactor ; Biotechnology ; Bubble column reactor ; Chemical engineering ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Gas holdup ; Heat and mass transfer. Packings, plates ; Hydrodynamics of contact apparatus ; Loop reactor ; Mass transfer ; Methods. Procedures. Technologies ; Others ; Reactors ; Various methods and equipments</subject><ispartof>Chemical engineering science, 2005, Vol.60 (1), p.213-218</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-d890a6059bd3d403f010f5ed2d41aa2948e0c956860b086e2d658f784d2881123</citedby><cites>FETCH-LOGICAL-c395t-d890a6059bd3d403f010f5ed2d41aa2948e0c956860b086e2d658f784d2881123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0009250904005810$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16431279$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhanasekharan, Kumar M.</creatorcontrib><creatorcontrib>Sanyal, Jay</creatorcontrib><creatorcontrib>Jain, Anupam</creatorcontrib><creatorcontrib>Haidari, Ahmad</creatorcontrib><title>A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics</title><title>Chemical engineering science</title><description>In many biological processes, increasing the rate of transport of a limiting nutrient can enhance the rate of product formation. In aerobic fermentation systems, the rate of oxygen transfer to the cells is usually the limiting factor. A key factor that influences oxygen transfer is bubble size distribution. The bubble sizes dictate the available interfacial area for gas–liquid mass transfer. Scale-up and design of bioreactors must meet oxygen transfer requirements while maintaining low shear rates and a controlled flow pattern. This is the motivation for the current work that captures multiphase hydrodynamics and simultaneously predicts the bubble size distribution. Bubbles break up and coalesce due to interactions with turbulent eddies, giving rise to a distribution of bubble sizes. These effects are included in the modeling approach by solving a population balance model with bubble breakage and coalescence. The population balance model was coupled to multiphase flow equations and solved using a commercial computational fluid mechanics code FLUENT 6. Gas holdup and volumetric mass transfer coefficients were predicted for different superficial velocities and compared to the experimental results of Kawase and Hashimoto (1996). The modeling results showed good agreement with experiment.</description><subject>Airlift</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Bioreactor</subject><subject>Biotechnology</subject><subject>Bubble column reactor</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gas holdup</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Loop reactor</subject><subject>Mass transfer</subject><subject>Methods. Procedures. Technologies</subject><subject>Others</subject><subject>Reactors</subject><subject>Various methods and equipments</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhq2qSGwLD8DNF7gljJ04ccSpqmiLVKmXcrZm7UnrlRMHO0EsT4_LVuLGyRrNN-P5P8Y-CKgFiO7zobaUawnQ1tDXQugzthO6b6q2BXXOdgAwVFLB8JZd5HwoZd8L2LHjFX-imRIG_5scx2VJEe0zXyOfoqPA469jAfiacM4jJe5nvvcxEdo1psy37OcnvsRlC7j6WJoYcC63cJwdt3FatvVvAwMfw-Ydd8cZJ2_zO_ZmxJDp_et7yb7ffH28vqvuH26_XV_dV7YZ1Fo5PQB2oIa9a1wLzQgCRkVOulYgyqHVBHZQne5gD7oj6Tqlx163TmothGwu2afT3pLsx0Z5NZPPlkI5k-KWjdSq6UWnCihOoE0x50SjWZKfMB2NAPMi2RxMCWZeJBvoTZFcZj6-LsdsMYzFkvX532DXNkL2Q-G-nDgqSX96SiZbT8WT84nsalz0__nlDw4-k5k</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Dhanasekharan, Kumar M.</creator><creator>Sanyal, Jay</creator><creator>Jain, Anupam</creator><creator>Haidari, Ahmad</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>2005</creationdate><title>A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics</title><author>Dhanasekharan, Kumar M. ; Sanyal, Jay ; Jain, Anupam ; Haidari, Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-d890a6059bd3d403f010f5ed2d41aa2948e0c956860b086e2d658f784d2881123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Airlift</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Bioreactor</topic><topic>Biotechnology</topic><topic>Bubble column reactor</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gas holdup</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Loop reactor</topic><topic>Mass transfer</topic><topic>Methods. Procedures. Technologies</topic><topic>Others</topic><topic>Reactors</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhanasekharan, Kumar M.</creatorcontrib><creatorcontrib>Sanyal, Jay</creatorcontrib><creatorcontrib>Jain, Anupam</creatorcontrib><creatorcontrib>Haidari, Ahmad</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhanasekharan, Kumar M.</au><au>Sanyal, Jay</au><au>Jain, Anupam</au><au>Haidari, Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics</atitle><jtitle>Chemical engineering science</jtitle><date>2005</date><risdate>2005</risdate><volume>60</volume><issue>1</issue><spage>213</spage><epage>218</epage><pages>213-218</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>In many biological processes, increasing the rate of transport of a limiting nutrient can enhance the rate of product formation. In aerobic fermentation systems, the rate of oxygen transfer to the cells is usually the limiting factor. A key factor that influences oxygen transfer is bubble size distribution. The bubble sizes dictate the available interfacial area for gas–liquid mass transfer. Scale-up and design of bioreactors must meet oxygen transfer requirements while maintaining low shear rates and a controlled flow pattern. This is the motivation for the current work that captures multiphase hydrodynamics and simultaneously predicts the bubble size distribution. Bubbles break up and coalesce due to interactions with turbulent eddies, giving rise to a distribution of bubble sizes. These effects are included in the modeling approach by solving a population balance model with bubble breakage and coalescence. The population balance model was coupled to multiphase flow equations and solved using a commercial computational fluid mechanics code FLUENT 6. Gas holdup and volumetric mass transfer coefficients were predicted for different superficial velocities and compared to the experimental results of Kawase and Hashimoto (1996). The modeling results showed good agreement with experiment.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2004.07.118</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2005, Vol.60 (1), p.213-218
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_28537165
source Elsevier ScienceDirect Journals
subjects Airlift
Applied sciences
Biological and medical sciences
Bioreactor
Biotechnology
Bubble column reactor
Chemical engineering
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Gas holdup
Heat and mass transfer. Packings, plates
Hydrodynamics of contact apparatus
Loop reactor
Mass transfer
Methods. Procedures. Technologies
Others
Reactors
Various methods and equipments
title A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T01%3A18%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20approach%20to%20model%20oxygen%20transfer%20in%20bioreactors%20using%20population%20balances%20and%20computational%20fluid%20dynamics&rft.jtitle=Chemical%20engineering%20science&rft.au=Dhanasekharan,%20Kumar%20M.&rft.date=2005&rft.volume=60&rft.issue=1&rft.spage=213&rft.epage=218&rft.pages=213-218&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2004.07.118&rft_dat=%3Cproquest_cross%3E28537165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28537165&rft_id=info:pmid/&rft_els_id=S0009250904005810&rfr_iscdi=true