Optimization of radial active magnetic bearings using the finite element technique and the differential evolution algorithm
An optimization of radial active magnetic bearings is presented in the paper. The radial bearing is numerically optimized, using differential evolution-a stochastic direct search algorithm. The nonlinear solution of the magnetic vector potential is determined, using the 2D finite element method. The...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2000-07, Vol.36 (4), p.1009-1013 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1013 |
---|---|
container_issue | 4 |
container_start_page | 1009 |
container_title | IEEE transactions on magnetics |
container_volume | 36 |
creator | Stumberger, G. Dolinar, D. Palmer, U. Hameyer, K. |
description | An optimization of radial active magnetic bearings is presented in the paper. The radial bearing is numerically optimized, using differential evolution-a stochastic direct search algorithm. The nonlinear solution of the magnetic vector potential is determined, using the 2D finite element method. The force is calculated by Maxwell's stress tensor method. The parameters of the optimized and nonoptimized bearing are compared. The force, the current gain, and the position stiffness are given as functions of the control current and rotor displacement. |
doi_str_mv | 10.1109/20.877612 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28533821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>877612</ieee_id><sourcerecordid>1031314512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-5213d4bc16e1337dd9e5b88dfc135faceb124a6761bc84f392f8ade00332d43c3</originalsourceid><addsrcrecordid>eNqFkT1rHDEQQEVIIBcnRVpXwoHgFOvoa7VSaYztBAxuknrRSqM7mV3tWdIa7Pz56HyHCxdJNQzz5o1Gg9BnSs4oJfo7I2eq6yRlb9CKakEbQqR-i1aEUNVoIcV79CHnu5qKlpIV-nO7LWEKT6aEOeLZ42RcMCM2toQHwJNZRyjB4gFMCnGd8ZJrwGUD2IcYCmAYYYJYcAG7ieF-AWyiewZc8B5Sre2E8DCPy_MQM67nFMpm-ojeeTNm-HSIR-j31eWvix_Nze31z4vzm8YKyUrTMsqdGCyVQDnvnNPQDko5bylvvbEwUCaMrEsPVgnPNfPKOCCEc-YEt_wIfd17t2mu78uln0K2MI4mwrzknqmWc1Wn_BfspCKayAqe_hOkhFO--2FW0ZNX6N28pFj37ZVqqeaiUxX6todsmnNO4PttCpNJj9XU7-7aM9Lv71rZLwehydaMPploQ35p6LTo5I463lMBAF6KB8Vfr_Oq_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885193478</pqid></control><display><type>article</type><title>Optimization of radial active magnetic bearings using the finite element technique and the differential evolution algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Stumberger, G. ; Dolinar, D. ; Palmer, U. ; Hameyer, K.</creator><creatorcontrib>Stumberger, G. ; Dolinar, D. ; Palmer, U. ; Hameyer, K.</creatorcontrib><description>An optimization of radial active magnetic bearings is presented in the paper. The radial bearing is numerically optimized, using differential evolution-a stochastic direct search algorithm. The nonlinear solution of the magnetic vector potential is determined, using the 2D finite element method. The force is calculated by Maxwell's stress tensor method. The parameters of the optimized and nonoptimized bearing are compared. The force, the current gain, and the position stiffness are given as functions of the control current and rotor displacement.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.877612</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Control systems ; Electrical engineering. Electrical power engineering ; Electromagnets ; Exact sciences and technology ; Finite element method ; Finite element methods ; Magnetic bearings ; Magnetic levitation ; Magnetic levitation, propulsion and control devices ; Magnetism ; Mathematical analysis ; Mathematical models ; Miscellaneous ; Nonlinearity ; Open loop systems ; Optimization ; Optimization methods ; Rotors ; Stochastic processes ; Stress tensors ; Tensile stress ; Various equipment and components ; Voltage</subject><ispartof>IEEE transactions on magnetics, 2000-07, Vol.36 (4), p.1009-1013</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-5213d4bc16e1337dd9e5b88dfc135faceb124a6761bc84f392f8ade00332d43c3</citedby><cites>FETCH-LOGICAL-c462t-5213d4bc16e1337dd9e5b88dfc135faceb124a6761bc84f392f8ade00332d43c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/877612$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/877612$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=794762$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stumberger, G.</creatorcontrib><creatorcontrib>Dolinar, D.</creatorcontrib><creatorcontrib>Palmer, U.</creatorcontrib><creatorcontrib>Hameyer, K.</creatorcontrib><title>Optimization of radial active magnetic bearings using the finite element technique and the differential evolution algorithm</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>An optimization of radial active magnetic bearings is presented in the paper. The radial bearing is numerically optimized, using differential evolution-a stochastic direct search algorithm. The nonlinear solution of the magnetic vector potential is determined, using the 2D finite element method. The force is calculated by Maxwell's stress tensor method. The parameters of the optimized and nonoptimized bearing are compared. The force, the current gain, and the position stiffness are given as functions of the control current and rotor displacement.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Control systems</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>Magnetic bearings</subject><subject>Magnetic levitation</subject><subject>Magnetic levitation, propulsion and control devices</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Nonlinearity</subject><subject>Open loop systems</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Rotors</subject><subject>Stochastic processes</subject><subject>Stress tensors</subject><subject>Tensile stress</subject><subject>Various equipment and components</subject><subject>Voltage</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkT1rHDEQQEVIIBcnRVpXwoHgFOvoa7VSaYztBAxuknrRSqM7mV3tWdIa7Pz56HyHCxdJNQzz5o1Gg9BnSs4oJfo7I2eq6yRlb9CKakEbQqR-i1aEUNVoIcV79CHnu5qKlpIV-nO7LWEKT6aEOeLZ42RcMCM2toQHwJNZRyjB4gFMCnGd8ZJrwGUD2IcYCmAYYYJYcAG7ieF-AWyiewZc8B5Sre2E8DCPy_MQM67nFMpm-ojeeTNm-HSIR-j31eWvix_Nze31z4vzm8YKyUrTMsqdGCyVQDnvnNPQDko5bylvvbEwUCaMrEsPVgnPNfPKOCCEc-YEt_wIfd17t2mu78uln0K2MI4mwrzknqmWc1Wn_BfspCKayAqe_hOkhFO--2FW0ZNX6N28pFj37ZVqqeaiUxX6todsmnNO4PttCpNJj9XU7-7aM9Lv71rZLwehydaMPploQ35p6LTo5I463lMBAF6KB8Vfr_Oq_g</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>Stumberger, G.</creator><creator>Dolinar, D.</creator><creator>Palmer, U.</creator><creator>Hameyer, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000701</creationdate><title>Optimization of radial active magnetic bearings using the finite element technique and the differential evolution algorithm</title><author>Stumberger, G. ; Dolinar, D. ; Palmer, U. ; Hameyer, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-5213d4bc16e1337dd9e5b88dfc135faceb124a6761bc84f392f8ade00332d43c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Control systems</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>Magnetic bearings</topic><topic>Magnetic levitation</topic><topic>Magnetic levitation, propulsion and control devices</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Nonlinearity</topic><topic>Open loop systems</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Rotors</topic><topic>Stochastic processes</topic><topic>Stress tensors</topic><topic>Tensile stress</topic><topic>Various equipment and components</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Stumberger, G.</creatorcontrib><creatorcontrib>Dolinar, D.</creatorcontrib><creatorcontrib>Palmer, U.</creatorcontrib><creatorcontrib>Hameyer, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stumberger, G.</au><au>Dolinar, D.</au><au>Palmer, U.</au><au>Hameyer, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of radial active magnetic bearings using the finite element technique and the differential evolution algorithm</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2000-07-01</date><risdate>2000</risdate><volume>36</volume><issue>4</issue><spage>1009</spage><epage>1013</epage><pages>1009-1013</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>An optimization of radial active magnetic bearings is presented in the paper. The radial bearing is numerically optimized, using differential evolution-a stochastic direct search algorithm. The nonlinear solution of the magnetic vector potential is determined, using the 2D finite element method. The force is calculated by Maxwell's stress tensor method. The parameters of the optimized and nonoptimized bearing are compared. The force, the current gain, and the position stiffness are given as functions of the control current and rotor displacement.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.877612</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2000-07, Vol.36 (4), p.1009-1013 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_proquest_miscellaneous_28533821 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Control systems Electrical engineering. Electrical power engineering Electromagnets Exact sciences and technology Finite element method Finite element methods Magnetic bearings Magnetic levitation Magnetic levitation, propulsion and control devices Magnetism Mathematical analysis Mathematical models Miscellaneous Nonlinearity Open loop systems Optimization Optimization methods Rotors Stochastic processes Stress tensors Tensile stress Various equipment and components Voltage |
title | Optimization of radial active magnetic bearings using the finite element technique and the differential evolution algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20radial%20active%20magnetic%20bearings%20using%20the%20finite%20element%20technique%20and%20the%20differential%20evolution%20algorithm&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Stumberger,%20G.&rft.date=2000-07-01&rft.volume=36&rft.issue=4&rft.spage=1009&rft.epage=1013&rft.pages=1009-1013&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.877612&rft_dat=%3Cproquest_RIE%3E1031314512%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885193478&rft_id=info:pmid/&rft_ieee_id=877612&rfr_iscdi=true |