Optimization of radial active magnetic bearings using the finite element technique and the differential evolution algorithm

An optimization of radial active magnetic bearings is presented in the paper. The radial bearing is numerically optimized, using differential evolution-a stochastic direct search algorithm. The nonlinear solution of the magnetic vector potential is determined, using the 2D finite element method. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2000-07, Vol.36 (4), p.1009-1013
Hauptverfasser: Stumberger, G., Dolinar, D., Palmer, U., Hameyer, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1013
container_issue 4
container_start_page 1009
container_title IEEE transactions on magnetics
container_volume 36
creator Stumberger, G.
Dolinar, D.
Palmer, U.
Hameyer, K.
description An optimization of radial active magnetic bearings is presented in the paper. The radial bearing is numerically optimized, using differential evolution-a stochastic direct search algorithm. The nonlinear solution of the magnetic vector potential is determined, using the 2D finite element method. The force is calculated by Maxwell's stress tensor method. The parameters of the optimized and nonoptimized bearing are compared. The force, the current gain, and the position stiffness are given as functions of the control current and rotor displacement.
doi_str_mv 10.1109/20.877612
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28533821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>877612</ieee_id><sourcerecordid>1031314512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-5213d4bc16e1337dd9e5b88dfc135faceb124a6761bc84f392f8ade00332d43c3</originalsourceid><addsrcrecordid>eNqFkT1rHDEQQEVIIBcnRVpXwoHgFOvoa7VSaYztBAxuknrRSqM7mV3tWdIa7Pz56HyHCxdJNQzz5o1Gg9BnSs4oJfo7I2eq6yRlb9CKakEbQqR-i1aEUNVoIcV79CHnu5qKlpIV-nO7LWEKT6aEOeLZ42RcMCM2toQHwJNZRyjB4gFMCnGd8ZJrwGUD2IcYCmAYYYJYcAG7ieF-AWyiewZc8B5Sre2E8DCPy_MQM67nFMpm-ojeeTNm-HSIR-j31eWvix_Nze31z4vzm8YKyUrTMsqdGCyVQDnvnNPQDko5bylvvbEwUCaMrEsPVgnPNfPKOCCEc-YEt_wIfd17t2mu78uln0K2MI4mwrzknqmWc1Wn_BfspCKayAqe_hOkhFO--2FW0ZNX6N28pFj37ZVqqeaiUxX6todsmnNO4PttCpNJj9XU7-7aM9Lv71rZLwehydaMPploQ35p6LTo5I463lMBAF6KB8Vfr_Oq_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885193478</pqid></control><display><type>article</type><title>Optimization of radial active magnetic bearings using the finite element technique and the differential evolution algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Stumberger, G. ; Dolinar, D. ; Palmer, U. ; Hameyer, K.</creator><creatorcontrib>Stumberger, G. ; Dolinar, D. ; Palmer, U. ; Hameyer, K.</creatorcontrib><description>An optimization of radial active magnetic bearings is presented in the paper. The radial bearing is numerically optimized, using differential evolution-a stochastic direct search algorithm. The nonlinear solution of the magnetic vector potential is determined, using the 2D finite element method. The force is calculated by Maxwell's stress tensor method. The parameters of the optimized and nonoptimized bearing are compared. The force, the current gain, and the position stiffness are given as functions of the control current and rotor displacement.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.877612</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Control systems ; Electrical engineering. Electrical power engineering ; Electromagnets ; Exact sciences and technology ; Finite element method ; Finite element methods ; Magnetic bearings ; Magnetic levitation ; Magnetic levitation, propulsion and control devices ; Magnetism ; Mathematical analysis ; Mathematical models ; Miscellaneous ; Nonlinearity ; Open loop systems ; Optimization ; Optimization methods ; Rotors ; Stochastic processes ; Stress tensors ; Tensile stress ; Various equipment and components ; Voltage</subject><ispartof>IEEE transactions on magnetics, 2000-07, Vol.36 (4), p.1009-1013</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-5213d4bc16e1337dd9e5b88dfc135faceb124a6761bc84f392f8ade00332d43c3</citedby><cites>FETCH-LOGICAL-c462t-5213d4bc16e1337dd9e5b88dfc135faceb124a6761bc84f392f8ade00332d43c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/877612$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/877612$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=794762$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stumberger, G.</creatorcontrib><creatorcontrib>Dolinar, D.</creatorcontrib><creatorcontrib>Palmer, U.</creatorcontrib><creatorcontrib>Hameyer, K.</creatorcontrib><title>Optimization of radial active magnetic bearings using the finite element technique and the differential evolution algorithm</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>An optimization of radial active magnetic bearings is presented in the paper. The radial bearing is numerically optimized, using differential evolution-a stochastic direct search algorithm. The nonlinear solution of the magnetic vector potential is determined, using the 2D finite element method. The force is calculated by Maxwell's stress tensor method. The parameters of the optimized and nonoptimized bearing are compared. The force, the current gain, and the position stiffness are given as functions of the control current and rotor displacement.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Control systems</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>Magnetic bearings</subject><subject>Magnetic levitation</subject><subject>Magnetic levitation, propulsion and control devices</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Nonlinearity</subject><subject>Open loop systems</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Rotors</subject><subject>Stochastic processes</subject><subject>Stress tensors</subject><subject>Tensile stress</subject><subject>Various equipment and components</subject><subject>Voltage</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkT1rHDEQQEVIIBcnRVpXwoHgFOvoa7VSaYztBAxuknrRSqM7mV3tWdIa7Pz56HyHCxdJNQzz5o1Gg9BnSs4oJfo7I2eq6yRlb9CKakEbQqR-i1aEUNVoIcV79CHnu5qKlpIV-nO7LWEKT6aEOeLZ42RcMCM2toQHwJNZRyjB4gFMCnGd8ZJrwGUD2IcYCmAYYYJYcAG7ieF-AWyiewZc8B5Sre2E8DCPy_MQM67nFMpm-ojeeTNm-HSIR-j31eWvix_Nze31z4vzm8YKyUrTMsqdGCyVQDnvnNPQDko5bylvvbEwUCaMrEsPVgnPNfPKOCCEc-YEt_wIfd17t2mu78uln0K2MI4mwrzknqmWc1Wn_BfspCKayAqe_hOkhFO--2FW0ZNX6N28pFj37ZVqqeaiUxX6todsmnNO4PttCpNJj9XU7-7aM9Lv71rZLwehydaMPploQ35p6LTo5I463lMBAF6KB8Vfr_Oq_g</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>Stumberger, G.</creator><creator>Dolinar, D.</creator><creator>Palmer, U.</creator><creator>Hameyer, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000701</creationdate><title>Optimization of radial active magnetic bearings using the finite element technique and the differential evolution algorithm</title><author>Stumberger, G. ; Dolinar, D. ; Palmer, U. ; Hameyer, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-5213d4bc16e1337dd9e5b88dfc135faceb124a6761bc84f392f8ade00332d43c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Control systems</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>Magnetic bearings</topic><topic>Magnetic levitation</topic><topic>Magnetic levitation, propulsion and control devices</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Nonlinearity</topic><topic>Open loop systems</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Rotors</topic><topic>Stochastic processes</topic><topic>Stress tensors</topic><topic>Tensile stress</topic><topic>Various equipment and components</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Stumberger, G.</creatorcontrib><creatorcontrib>Dolinar, D.</creatorcontrib><creatorcontrib>Palmer, U.</creatorcontrib><creatorcontrib>Hameyer, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stumberger, G.</au><au>Dolinar, D.</au><au>Palmer, U.</au><au>Hameyer, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of radial active magnetic bearings using the finite element technique and the differential evolution algorithm</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2000-07-01</date><risdate>2000</risdate><volume>36</volume><issue>4</issue><spage>1009</spage><epage>1013</epage><pages>1009-1013</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>An optimization of radial active magnetic bearings is presented in the paper. The radial bearing is numerically optimized, using differential evolution-a stochastic direct search algorithm. The nonlinear solution of the magnetic vector potential is determined, using the 2D finite element method. The force is calculated by Maxwell's stress tensor method. The parameters of the optimized and nonoptimized bearing are compared. The force, the current gain, and the position stiffness are given as functions of the control current and rotor displacement.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.877612</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2000-07, Vol.36 (4), p.1009-1013
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_miscellaneous_28533821
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Control systems
Electrical engineering. Electrical power engineering
Electromagnets
Exact sciences and technology
Finite element method
Finite element methods
Magnetic bearings
Magnetic levitation
Magnetic levitation, propulsion and control devices
Magnetism
Mathematical analysis
Mathematical models
Miscellaneous
Nonlinearity
Open loop systems
Optimization
Optimization methods
Rotors
Stochastic processes
Stress tensors
Tensile stress
Various equipment and components
Voltage
title Optimization of radial active magnetic bearings using the finite element technique and the differential evolution algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20radial%20active%20magnetic%20bearings%20using%20the%20finite%20element%20technique%20and%20the%20differential%20evolution%20algorithm&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Stumberger,%20G.&rft.date=2000-07-01&rft.volume=36&rft.issue=4&rft.spage=1009&rft.epage=1013&rft.pages=1009-1013&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.877612&rft_dat=%3Cproquest_RIE%3E1031314512%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885193478&rft_id=info:pmid/&rft_ieee_id=877612&rfr_iscdi=true