Optimisation of two variables function with linear inequalities constraints - Contraction of the feasible region

Shows how a hi-dimensional optimisation problem with linear inequalities constraints is converted into a global optimisation problem of one bounded variable function f*. Then, we reduce the feasible region f* before seeking its global optimum.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kybernetes 2000-12, Vol.29 (9/10), p.1272-1283
Hauptverfasser: Ammar, Hamadi, Cherruault, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1283
container_issue 9/10
container_start_page 1272
container_title Kybernetes
container_volume 29
creator Ammar, Hamadi
Cherruault, Yves
description Shows how a hi-dimensional optimisation problem with linear inequalities constraints is converted into a global optimisation problem of one bounded variable function f*. Then, we reduce the feasible region f* before seeking its global optimum.
doi_str_mv 10.1108/03684920010346338
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_proquest_miscellaneous_28532259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743400657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-180d371d72aa3b3e71530e050b30806a4000e3e38fe8996be06b8f42d073b9143</originalsourceid><addsrcrecordid>eNqN0U1v1DAQBmALgcRS-AHcLA5wITD2OLFzRKt-IFXqBWhvlpNMqEs2Tm2Hwr-vy6IeKEJcbNnzzGuNzNhLAe-EAPMesDGqlQACUDWI5hHbCF2bShuDj9nmrl4VcPGUPUvpqjjZSNiw5WzJfueTyz7MPIw83wT-3UXvuokSH9e5_1W58fmST34mF3lZr1c3-eyL6MOccnR-zolXfBvmcujvwy6Jj-SSL2E80tdy_Zw9Gd2U6MXv_YB9Pjr8tD2pTs-OP24_nFa9ApErYWBALQYtncMOSYsagaCGDsFA4xQAEBKakUzbNh1B05lRyQE0dq1QeMDe7HOXGK5XStmWKXuaJjdTWJPVCktGU-siX_9TSlOjlHVb4Ks_4FVY41ymsFJgK0BCXZDYoz6GlCKNdol-5-JPK8DefZV98FWlp9r3-JTpx32Di99so1HXVp1Le3T-RV2YE2NF8bD3tKPopuG_nnj795YH1C7DiLc-h7CZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213910205</pqid></control><display><type>article</type><title>Optimisation of two variables function with linear inequalities constraints - Contraction of the feasible region</title><source>Emerald Journals</source><creator>Ammar, Hamadi ; Cherruault, Yves</creator><creatorcontrib>Ammar, Hamadi ; Cherruault, Yves</creatorcontrib><description>Shows how a hi-dimensional optimisation problem with linear inequalities constraints is converted into a global optimisation problem of one bounded variable function f*. Then, we reduce the feasible region f* before seeking its global optimum.</description><identifier>ISSN: 0368-492X</identifier><identifier>EISSN: 1758-7883</identifier><identifier>DOI: 10.1108/03684920010346338</identifier><identifier>CODEN: KBNTA3</identifier><language>eng</language><publisher>London: MCB UP Ltd</publisher><subject>Bisection ; Cybernetics ; Global optimisation ; Optimization</subject><ispartof>Kybernetes, 2000-12, Vol.29 (9/10), p.1272-1283</ispartof><rights>MCB UP Limited</rights><rights>Copyright MCB UP Limited (MCB) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c401t-180d371d72aa3b3e71530e050b30806a4000e3e38fe8996be06b8f42d073b9143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03684920010346338/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03684920010346338/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,961,11614,27901,27902,52661,52664</link.rule.ids></links><search><creatorcontrib>Ammar, Hamadi</creatorcontrib><creatorcontrib>Cherruault, Yves</creatorcontrib><title>Optimisation of two variables function with linear inequalities constraints - Contraction of the feasible region</title><title>Kybernetes</title><description>Shows how a hi-dimensional optimisation problem with linear inequalities constraints is converted into a global optimisation problem of one bounded variable function f*. Then, we reduce the feasible region f* before seeking its global optimum.</description><subject>Bisection</subject><subject>Cybernetics</subject><subject>Global optimisation</subject><subject>Optimization</subject><issn>0368-492X</issn><issn>1758-7883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0U1v1DAQBmALgcRS-AHcLA5wITD2OLFzRKt-IFXqBWhvlpNMqEs2Tm2Hwr-vy6IeKEJcbNnzzGuNzNhLAe-EAPMesDGqlQACUDWI5hHbCF2bShuDj9nmrl4VcPGUPUvpqjjZSNiw5WzJfueTyz7MPIw83wT-3UXvuokSH9e5_1W58fmST34mF3lZr1c3-eyL6MOccnR-zolXfBvmcujvwy6Jj-SSL2E80tdy_Zw9Gd2U6MXv_YB9Pjr8tD2pTs-OP24_nFa9ApErYWBALQYtncMOSYsagaCGDsFA4xQAEBKakUzbNh1B05lRyQE0dq1QeMDe7HOXGK5XStmWKXuaJjdTWJPVCktGU-siX_9TSlOjlHVb4Ks_4FVY41ymsFJgK0BCXZDYoz6GlCKNdol-5-JPK8DefZV98FWlp9r3-JTpx32Di99so1HXVp1Le3T-RV2YE2NF8bD3tKPopuG_nnj795YH1C7DiLc-h7CZ</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Ammar, Hamadi</creator><creator>Cherruault, Yves</creator><general>MCB UP Ltd</general><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20001201</creationdate><title>Optimisation of two variables function with linear inequalities constraints - Contraction of the feasible region</title><author>Ammar, Hamadi ; Cherruault, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-180d371d72aa3b3e71530e050b30806a4000e3e38fe8996be06b8f42d073b9143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bisection</topic><topic>Cybernetics</topic><topic>Global optimisation</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ammar, Hamadi</creatorcontrib><creatorcontrib>Cherruault, Yves</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Kybernetes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ammar, Hamadi</au><au>Cherruault, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimisation of two variables function with linear inequalities constraints - Contraction of the feasible region</atitle><jtitle>Kybernetes</jtitle><date>2000-12-01</date><risdate>2000</risdate><volume>29</volume><issue>9/10</issue><spage>1272</spage><epage>1283</epage><pages>1272-1283</pages><issn>0368-492X</issn><eissn>1758-7883</eissn><coden>KBNTA3</coden><abstract>Shows how a hi-dimensional optimisation problem with linear inequalities constraints is converted into a global optimisation problem of one bounded variable function f*. Then, we reduce the feasible region f* before seeking its global optimum.</abstract><cop>London</cop><pub>MCB UP Ltd</pub><doi>10.1108/03684920010346338</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0368-492X
ispartof Kybernetes, 2000-12, Vol.29 (9/10), p.1272-1283
issn 0368-492X
1758-7883
language eng
recordid cdi_proquest_miscellaneous_28532259
source Emerald Journals
subjects Bisection
Cybernetics
Global optimisation
Optimization
title Optimisation of two variables function with linear inequalities constraints - Contraction of the feasible region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimisation%20of%20two%20variables%20function%20with%20linear%20inequalities%20constraints%20-%20Contraction%20of%20the%20feasible%20region&rft.jtitle=Kybernetes&rft.au=Ammar,%20Hamadi&rft.date=2000-12-01&rft.volume=29&rft.issue=9/10&rft.spage=1272&rft.epage=1283&rft.pages=1272-1283&rft.issn=0368-492X&rft.eissn=1758-7883&rft.coden=KBNTA3&rft_id=info:doi/10.1108/03684920010346338&rft_dat=%3Cproquest_emera%3E743400657%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213910205&rft_id=info:pmid/&rfr_iscdi=true