Quantitative modeling of the anisotropy of ultrasonic backscatter from canine myocardium
Reports extensions and new results of the First Time Domain Born approximation model used by Mottley and Miller (1982) to describe the anisotropy of ultrasonic backscatter measured in canine myocardium. The interaction of an ultrasonic plane wave impulse with a single cylindrical scatterer using tim...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 1994-07, Vol.41 (4), p.441-450 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 450 |
---|---|
container_issue | 4 |
container_start_page | 441 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 41 |
creator | Kumar, K.N. Mottley, J.G. |
description | Reports extensions and new results of the First Time Domain Born approximation model used by Mottley and Miller (1982) to describe the anisotropy of ultrasonic backscatter measured in canine myocardium. The interaction of an ultrasonic plane wave impulse with a single cylindrical scatterer using time and frequency domain approaches is reviewed. Myocardial tissue is modeled as a suspension of aligned cylindrically shaped scatterers uniformly distributed in a homogeneous medium. The authors propose extensions to this model to deal with nonideal scatterer orientation, by introducing axial distribution functions and scatterer size distributions based on histology, modeled as a uniform distribution. The backscatter coefficient in the range 2.0-8.0 MHz is calculated. An algorithm to compute the average differential scattering cross section is presented. Ultrasonic elastic properties of myocardial tissue are discussed. Results of the anisotropy of the numerically computed backscatter parameters for model media having nominal mechanical and acoustic properties of canine myocardial tissue are presented and compared to available experimental data along with discussion of possible conclusions.< > |
doi_str_mv | 10.1109/58.294103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28529157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>294103</ieee_id><sourcerecordid>28529157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-4cbea0a035d64e1bbe61a7ce2635dd1f539e1872cb60c62336f8f8215c2425e43</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK4evHrqQQQPXfPd9CjL-gELIih4K2k60WjbrEkq7L-3S5c9DbzzzAPzInRJ8IIQXN4JtaAlJ5gdoRkRVOSqFOIYzbBSImeY4FN0FuM3xoTzks7Qx-ug--SSTu4Pss430Lr-M_M2S1-Q6d5Fn4LfbHfJ0Kago--dyWptfqLRKUHIbPBdZka0HwVbb3Ro3NCdoxOr2wgX-zlH7w-rt-VTvn55fF7er3PDsEw5NzVorDETjeRA6hok0YUBKsekIVawEogqqKklNpIyJq2yihJhKKcCOJujm8m7Cf53gJiqzkUDbat78EOsqBK0JKIYwdsJNMHHGMBWm-A6HbYVwdWuu0qoaupuZK_3Uj1-2dqge-Pi4YCTgsmCjtjVhDkAOGz3jn-UhHc7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28529157</pqid></control><display><type>article</type><title>Quantitative modeling of the anisotropy of ultrasonic backscatter from canine myocardium</title><source>IEEE Electronic Library (IEL)</source><creator>Kumar, K.N. ; Mottley, J.G.</creator><creatorcontrib>Kumar, K.N. ; Mottley, J.G.</creatorcontrib><description>Reports extensions and new results of the First Time Domain Born approximation model used by Mottley and Miller (1982) to describe the anisotropy of ultrasonic backscatter measured in canine myocardium. The interaction of an ultrasonic plane wave impulse with a single cylindrical scatterer using time and frequency domain approaches is reviewed. Myocardial tissue is modeled as a suspension of aligned cylindrically shaped scatterers uniformly distributed in a homogeneous medium. The authors propose extensions to this model to deal with nonideal scatterer orientation, by introducing axial distribution functions and scatterer size distributions based on histology, modeled as a uniform distribution. The backscatter coefficient in the range 2.0-8.0 MHz is calculated. An algorithm to compute the average differential scattering cross section is presented. Ultrasonic elastic properties of myocardial tissue are discussed. Results of the anisotropy of the numerically computed backscatter parameters for model media having nominal mechanical and acoustic properties of canine myocardial tissue are presented and compared to available experimental data along with discussion of possible conclusions.< ></description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/58.294103</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic scattering ; Anisotropic magnetoresistance ; Approximation methods ; Backscatter ; Biological and medical sciences ; Distribution functions ; Frequency domain analysis ; Fundamental and applied biological sciences. Psychology ; Heart ; Mechanical factors ; Myocardium ; Time measurement ; Ultrasonic variables measurement ; Vertebrates: cardiovascular system</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1994-07, Vol.41 (4), p.441-450</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-4cbea0a035d64e1bbe61a7ce2635dd1f539e1872cb60c62336f8f8215c2425e43</citedby><cites>FETCH-LOGICAL-c306t-4cbea0a035d64e1bbe61a7ce2635dd1f539e1872cb60c62336f8f8215c2425e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/294103$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/294103$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4173672$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, K.N.</creatorcontrib><creatorcontrib>Mottley, J.G.</creatorcontrib><title>Quantitative modeling of the anisotropy of ultrasonic backscatter from canine myocardium</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><description>Reports extensions and new results of the First Time Domain Born approximation model used by Mottley and Miller (1982) to describe the anisotropy of ultrasonic backscatter measured in canine myocardium. The interaction of an ultrasonic plane wave impulse with a single cylindrical scatterer using time and frequency domain approaches is reviewed. Myocardial tissue is modeled as a suspension of aligned cylindrically shaped scatterers uniformly distributed in a homogeneous medium. The authors propose extensions to this model to deal with nonideal scatterer orientation, by introducing axial distribution functions and scatterer size distributions based on histology, modeled as a uniform distribution. The backscatter coefficient in the range 2.0-8.0 MHz is calculated. An algorithm to compute the average differential scattering cross section is presented. Ultrasonic elastic properties of myocardial tissue are discussed. Results of the anisotropy of the numerically computed backscatter parameters for model media having nominal mechanical and acoustic properties of canine myocardial tissue are presented and compared to available experimental data along with discussion of possible conclusions.< ></description><subject>Acoustic scattering</subject><subject>Anisotropic magnetoresistance</subject><subject>Approximation methods</subject><subject>Backscatter</subject><subject>Biological and medical sciences</subject><subject>Distribution functions</subject><subject>Frequency domain analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Heart</subject><subject>Mechanical factors</subject><subject>Myocardium</subject><subject>Time measurement</subject><subject>Ultrasonic variables measurement</subject><subject>Vertebrates: cardiovascular system</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK4evHrqQQQPXfPd9CjL-gELIih4K2k60WjbrEkq7L-3S5c9DbzzzAPzInRJ8IIQXN4JtaAlJ5gdoRkRVOSqFOIYzbBSImeY4FN0FuM3xoTzks7Qx-ug--SSTu4Pss430Lr-M_M2S1-Q6d5Fn4LfbHfJ0Kago--dyWptfqLRKUHIbPBdZka0HwVbb3Ro3NCdoxOr2wgX-zlH7w-rt-VTvn55fF7er3PDsEw5NzVorDETjeRA6hok0YUBKsekIVawEogqqKklNpIyJq2yihJhKKcCOJujm8m7Cf53gJiqzkUDbat78EOsqBK0JKIYwdsJNMHHGMBWm-A6HbYVwdWuu0qoaupuZK_3Uj1-2dqge-Pi4YCTgsmCjtjVhDkAOGz3jn-UhHc7</recordid><startdate>19940701</startdate><enddate>19940701</enddate><creator>Kumar, K.N.</creator><creator>Mottley, J.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19940701</creationdate><title>Quantitative modeling of the anisotropy of ultrasonic backscatter from canine myocardium</title><author>Kumar, K.N. ; Mottley, J.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-4cbea0a035d64e1bbe61a7ce2635dd1f539e1872cb60c62336f8f8215c2425e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Acoustic scattering</topic><topic>Anisotropic magnetoresistance</topic><topic>Approximation methods</topic><topic>Backscatter</topic><topic>Biological and medical sciences</topic><topic>Distribution functions</topic><topic>Frequency domain analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Heart</topic><topic>Mechanical factors</topic><topic>Myocardium</topic><topic>Time measurement</topic><topic>Ultrasonic variables measurement</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, K.N.</creatorcontrib><creatorcontrib>Mottley, J.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumar, K.N.</au><au>Mottley, J.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative modeling of the anisotropy of ultrasonic backscatter from canine myocardium</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><date>1994-07-01</date><risdate>1994</risdate><volume>41</volume><issue>4</issue><spage>441</spage><epage>450</epage><pages>441-450</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Reports extensions and new results of the First Time Domain Born approximation model used by Mottley and Miller (1982) to describe the anisotropy of ultrasonic backscatter measured in canine myocardium. The interaction of an ultrasonic plane wave impulse with a single cylindrical scatterer using time and frequency domain approaches is reviewed. Myocardial tissue is modeled as a suspension of aligned cylindrically shaped scatterers uniformly distributed in a homogeneous medium. The authors propose extensions to this model to deal with nonideal scatterer orientation, by introducing axial distribution functions and scatterer size distributions based on histology, modeled as a uniform distribution. The backscatter coefficient in the range 2.0-8.0 MHz is calculated. An algorithm to compute the average differential scattering cross section is presented. Ultrasonic elastic properties of myocardial tissue are discussed. Results of the anisotropy of the numerically computed backscatter parameters for model media having nominal mechanical and acoustic properties of canine myocardial tissue are presented and compared to available experimental data along with discussion of possible conclusions.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/58.294103</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1994-07, Vol.41 (4), p.441-450 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_28529157 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic scattering Anisotropic magnetoresistance Approximation methods Backscatter Biological and medical sciences Distribution functions Frequency domain analysis Fundamental and applied biological sciences. Psychology Heart Mechanical factors Myocardium Time measurement Ultrasonic variables measurement Vertebrates: cardiovascular system |
title | Quantitative modeling of the anisotropy of ultrasonic backscatter from canine myocardium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20modeling%20of%20the%20anisotropy%20of%20ultrasonic%20backscatter%20from%20canine%20myocardium&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Kumar,%20K.N.&rft.date=1994-07-01&rft.volume=41&rft.issue=4&rft.spage=441&rft.epage=450&rft.pages=441-450&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/58.294103&rft_dat=%3Cproquest_RIE%3E28529157%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28529157&rft_id=info:pmid/&rft_ieee_id=294103&rfr_iscdi=true |