Quantitative modeling of the anisotropy of ultrasonic backscatter from canine myocardium

Reports extensions and new results of the First Time Domain Born approximation model used by Mottley and Miller (1982) to describe the anisotropy of ultrasonic backscatter measured in canine myocardium. The interaction of an ultrasonic plane wave impulse with a single cylindrical scatterer using tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 1994-07, Vol.41 (4), p.441-450
Hauptverfasser: Kumar, K.N., Mottley, J.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 450
container_issue 4
container_start_page 441
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 41
creator Kumar, K.N.
Mottley, J.G.
description Reports extensions and new results of the First Time Domain Born approximation model used by Mottley and Miller (1982) to describe the anisotropy of ultrasonic backscatter measured in canine myocardium. The interaction of an ultrasonic plane wave impulse with a single cylindrical scatterer using time and frequency domain approaches is reviewed. Myocardial tissue is modeled as a suspension of aligned cylindrically shaped scatterers uniformly distributed in a homogeneous medium. The authors propose extensions to this model to deal with nonideal scatterer orientation, by introducing axial distribution functions and scatterer size distributions based on histology, modeled as a uniform distribution. The backscatter coefficient in the range 2.0-8.0 MHz is calculated. An algorithm to compute the average differential scattering cross section is presented. Ultrasonic elastic properties of myocardial tissue are discussed. Results of the anisotropy of the numerically computed backscatter parameters for model media having nominal mechanical and acoustic properties of canine myocardial tissue are presented and compared to available experimental data along with discussion of possible conclusions.< >
doi_str_mv 10.1109/58.294103
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28529157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>294103</ieee_id><sourcerecordid>28529157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-4cbea0a035d64e1bbe61a7ce2635dd1f539e1872cb60c62336f8f8215c2425e43</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK4evHrqQQQPXfPd9CjL-gELIih4K2k60WjbrEkq7L-3S5c9DbzzzAPzInRJ8IIQXN4JtaAlJ5gdoRkRVOSqFOIYzbBSImeY4FN0FuM3xoTzks7Qx-ug--SSTu4Pss430Lr-M_M2S1-Q6d5Fn4LfbHfJ0Kago--dyWptfqLRKUHIbPBdZka0HwVbb3Ro3NCdoxOr2wgX-zlH7w-rt-VTvn55fF7er3PDsEw5NzVorDETjeRA6hok0YUBKsekIVawEogqqKklNpIyJq2yihJhKKcCOJujm8m7Cf53gJiqzkUDbat78EOsqBK0JKIYwdsJNMHHGMBWm-A6HbYVwdWuu0qoaupuZK_3Uj1-2dqge-Pi4YCTgsmCjtjVhDkAOGz3jn-UhHc7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28529157</pqid></control><display><type>article</type><title>Quantitative modeling of the anisotropy of ultrasonic backscatter from canine myocardium</title><source>IEEE Electronic Library (IEL)</source><creator>Kumar, K.N. ; Mottley, J.G.</creator><creatorcontrib>Kumar, K.N. ; Mottley, J.G.</creatorcontrib><description>Reports extensions and new results of the First Time Domain Born approximation model used by Mottley and Miller (1982) to describe the anisotropy of ultrasonic backscatter measured in canine myocardium. The interaction of an ultrasonic plane wave impulse with a single cylindrical scatterer using time and frequency domain approaches is reviewed. Myocardial tissue is modeled as a suspension of aligned cylindrically shaped scatterers uniformly distributed in a homogeneous medium. The authors propose extensions to this model to deal with nonideal scatterer orientation, by introducing axial distribution functions and scatterer size distributions based on histology, modeled as a uniform distribution. The backscatter coefficient in the range 2.0-8.0 MHz is calculated. An algorithm to compute the average differential scattering cross section is presented. Ultrasonic elastic properties of myocardial tissue are discussed. Results of the anisotropy of the numerically computed backscatter parameters for model media having nominal mechanical and acoustic properties of canine myocardial tissue are presented and compared to available experimental data along with discussion of possible conclusions.&lt; &gt;</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/58.294103</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic scattering ; Anisotropic magnetoresistance ; Approximation methods ; Backscatter ; Biological and medical sciences ; Distribution functions ; Frequency domain analysis ; Fundamental and applied biological sciences. Psychology ; Heart ; Mechanical factors ; Myocardium ; Time measurement ; Ultrasonic variables measurement ; Vertebrates: cardiovascular system</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1994-07, Vol.41 (4), p.441-450</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-4cbea0a035d64e1bbe61a7ce2635dd1f539e1872cb60c62336f8f8215c2425e43</citedby><cites>FETCH-LOGICAL-c306t-4cbea0a035d64e1bbe61a7ce2635dd1f539e1872cb60c62336f8f8215c2425e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/294103$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/294103$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4173672$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, K.N.</creatorcontrib><creatorcontrib>Mottley, J.G.</creatorcontrib><title>Quantitative modeling of the anisotropy of ultrasonic backscatter from canine myocardium</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><description>Reports extensions and new results of the First Time Domain Born approximation model used by Mottley and Miller (1982) to describe the anisotropy of ultrasonic backscatter measured in canine myocardium. The interaction of an ultrasonic plane wave impulse with a single cylindrical scatterer using time and frequency domain approaches is reviewed. Myocardial tissue is modeled as a suspension of aligned cylindrically shaped scatterers uniformly distributed in a homogeneous medium. The authors propose extensions to this model to deal with nonideal scatterer orientation, by introducing axial distribution functions and scatterer size distributions based on histology, modeled as a uniform distribution. The backscatter coefficient in the range 2.0-8.0 MHz is calculated. An algorithm to compute the average differential scattering cross section is presented. Ultrasonic elastic properties of myocardial tissue are discussed. Results of the anisotropy of the numerically computed backscatter parameters for model media having nominal mechanical and acoustic properties of canine myocardial tissue are presented and compared to available experimental data along with discussion of possible conclusions.&lt; &gt;</description><subject>Acoustic scattering</subject><subject>Anisotropic magnetoresistance</subject><subject>Approximation methods</subject><subject>Backscatter</subject><subject>Biological and medical sciences</subject><subject>Distribution functions</subject><subject>Frequency domain analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Heart</subject><subject>Mechanical factors</subject><subject>Myocardium</subject><subject>Time measurement</subject><subject>Ultrasonic variables measurement</subject><subject>Vertebrates: cardiovascular system</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK4evHrqQQQPXfPd9CjL-gELIih4K2k60WjbrEkq7L-3S5c9DbzzzAPzInRJ8IIQXN4JtaAlJ5gdoRkRVOSqFOIYzbBSImeY4FN0FuM3xoTzks7Qx-ug--SSTu4Pss430Lr-M_M2S1-Q6d5Fn4LfbHfJ0Kago--dyWptfqLRKUHIbPBdZka0HwVbb3Ro3NCdoxOr2wgX-zlH7w-rt-VTvn55fF7er3PDsEw5NzVorDETjeRA6hok0YUBKsekIVawEogqqKklNpIyJq2yihJhKKcCOJujm8m7Cf53gJiqzkUDbat78EOsqBK0JKIYwdsJNMHHGMBWm-A6HbYVwdWuu0qoaupuZK_3Uj1-2dqge-Pi4YCTgsmCjtjVhDkAOGz3jn-UhHc7</recordid><startdate>19940701</startdate><enddate>19940701</enddate><creator>Kumar, K.N.</creator><creator>Mottley, J.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19940701</creationdate><title>Quantitative modeling of the anisotropy of ultrasonic backscatter from canine myocardium</title><author>Kumar, K.N. ; Mottley, J.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-4cbea0a035d64e1bbe61a7ce2635dd1f539e1872cb60c62336f8f8215c2425e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Acoustic scattering</topic><topic>Anisotropic magnetoresistance</topic><topic>Approximation methods</topic><topic>Backscatter</topic><topic>Biological and medical sciences</topic><topic>Distribution functions</topic><topic>Frequency domain analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Heart</topic><topic>Mechanical factors</topic><topic>Myocardium</topic><topic>Time measurement</topic><topic>Ultrasonic variables measurement</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, K.N.</creatorcontrib><creatorcontrib>Mottley, J.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumar, K.N.</au><au>Mottley, J.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative modeling of the anisotropy of ultrasonic backscatter from canine myocardium</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><date>1994-07-01</date><risdate>1994</risdate><volume>41</volume><issue>4</issue><spage>441</spage><epage>450</epage><pages>441-450</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Reports extensions and new results of the First Time Domain Born approximation model used by Mottley and Miller (1982) to describe the anisotropy of ultrasonic backscatter measured in canine myocardium. The interaction of an ultrasonic plane wave impulse with a single cylindrical scatterer using time and frequency domain approaches is reviewed. Myocardial tissue is modeled as a suspension of aligned cylindrically shaped scatterers uniformly distributed in a homogeneous medium. The authors propose extensions to this model to deal with nonideal scatterer orientation, by introducing axial distribution functions and scatterer size distributions based on histology, modeled as a uniform distribution. The backscatter coefficient in the range 2.0-8.0 MHz is calculated. An algorithm to compute the average differential scattering cross section is presented. Ultrasonic elastic properties of myocardial tissue are discussed. Results of the anisotropy of the numerically computed backscatter parameters for model media having nominal mechanical and acoustic properties of canine myocardial tissue are presented and compared to available experimental data along with discussion of possible conclusions.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/58.294103</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1994-07, Vol.41 (4), p.441-450
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_28529157
source IEEE Electronic Library (IEL)
subjects Acoustic scattering
Anisotropic magnetoresistance
Approximation methods
Backscatter
Biological and medical sciences
Distribution functions
Frequency domain analysis
Fundamental and applied biological sciences. Psychology
Heart
Mechanical factors
Myocardium
Time measurement
Ultrasonic variables measurement
Vertebrates: cardiovascular system
title Quantitative modeling of the anisotropy of ultrasonic backscatter from canine myocardium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20modeling%20of%20the%20anisotropy%20of%20ultrasonic%20backscatter%20from%20canine%20myocardium&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Kumar,%20K.N.&rft.date=1994-07-01&rft.volume=41&rft.issue=4&rft.spage=441&rft.epage=450&rft.pages=441-450&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/58.294103&rft_dat=%3Cproquest_RIE%3E28529157%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28529157&rft_id=info:pmid/&rft_ieee_id=294103&rfr_iscdi=true