Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean

Sea ice (including overlying snow) is a dynamic interface between the atmosphere and the ocean, influencing the mercury (Hg) cycling in polar oceans. However, a large-scale and process-based model for the Hg cycle in the sea ice environment is lacking, hampering our understanding of regional Hg budg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2023-10, Vol.57 (39), p.14589-14601
Hauptverfasser: Huang, Shaojian, Wang, Feiyue, Yuan, Tengfei, Song, Zhengcheng, Wu, Peipei, Zhang, Yanxu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14601
container_issue 39
container_start_page 14589
container_title Environmental science & technology
container_volume 57
creator Huang, Shaojian
Wang, Feiyue
Yuan, Tengfei
Song, Zhengcheng
Wu, Peipei
Zhang, Yanxu
description Sea ice (including overlying snow) is a dynamic interface between the atmosphere and the ocean, influencing the mercury (Hg) cycling in polar oceans. However, a large-scale and process-based model for the Hg cycle in the sea ice environment is lacking, hampering our understanding of regional Hg budget and critical processes. Here, we develop a comprehensive model for the Hg cycle at the ocean–sea ice–atmosphere interface with constraints from observational polar cryospheric data. We find that seasonal patterns of average total Hg (THg) in snow are governed by snow thermodynamics and deposition, peaking in springtime (Arctic: 5.9 ng/L; Antarctic: 5.3 ng/L) and minimizing during ice formation (Arctic: 1.0 ng/L, Antarctic: 0.5 ng/L). Arctic and Antarctic sea ice exhibited THg concentration peaks in summer (0.25 ng/L) and spring (0.28 ng/L), respectively, governed by different snow Hg transmission pathways. Antarctic snow-ice formation facilitates Hg transfer to sea ice during spring, while in the Arctic, snow Hg is primarily moved through snowmelt. Overall, first-year sea ice acts as a buffer, receiving atmospheric Hg during ice growth and releasing it to the ocean in summer, influencing polar atmospheric and seawater Hg concentrations. Our model can assess climate change effects on polar Hg cycles and evaluate the Minamata Convention’s effectiveness for Arctic populations.
doi_str_mv 10.1021/acs.est.3c05080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2852633106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153812736</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-5ee85563fc8485e215331214eb39e6fd0d52de36ed859efbaf9f7ad10286d4083</originalsourceid><addsrcrecordid>eNqFkc1Lw0AQxRdRsFbPXhe8CJJ2P7rJxlstVQstFVTwFrabWZuSbupuovS_d2PEgyCeBmZ-7w0zD6FzSgaUMDpU2g_A1wOuiSCSHKAeFYxEQgp6iHqEUB6lPH45RifebwghjBPZQ2ZR5VAW9hXXa8ALcLpxezzZ6xJwYb-aj6DwTAOe2vfCVXYLtr7GY3zTGAMOr6D-AOjIh6pUDo_rbeV3a3CAlc3xUoOyp-jIqNLD2Xfto-fb6dPkPpov72aT8TxSPKF1JACkEDE3Wo6kAEYF55TREax4CrHJSS5YDjyGXIoUzEqZ1CQqD_fLOB8RyfvosvPdueqtCe_ItoXXUJbKQtX4jAdHSVnC439RJgWLw3rSohe_0E3VOBsOCVQiBBcpTwI17CjtKu8dmGzniq1y-4ySrI0oCxFlrfo7oqC46hTt4MfyL_oTIeySPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875535937</pqid></control><display><type>article</type><title>Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean</title><source>ACS Publications</source><creator>Huang, Shaojian ; Wang, Feiyue ; Yuan, Tengfei ; Song, Zhengcheng ; Wu, Peipei ; Zhang, Yanxu</creator><creatorcontrib>Huang, Shaojian ; Wang, Feiyue ; Yuan, Tengfei ; Song, Zhengcheng ; Wu, Peipei ; Zhang, Yanxu</creatorcontrib><description>Sea ice (including overlying snow) is a dynamic interface between the atmosphere and the ocean, influencing the mercury (Hg) cycling in polar oceans. However, a large-scale and process-based model for the Hg cycle in the sea ice environment is lacking, hampering our understanding of regional Hg budget and critical processes. Here, we develop a comprehensive model for the Hg cycle at the ocean–sea ice–atmosphere interface with constraints from observational polar cryospheric data. We find that seasonal patterns of average total Hg (THg) in snow are governed by snow thermodynamics and deposition, peaking in springtime (Arctic: 5.9 ng/L; Antarctic: 5.3 ng/L) and minimizing during ice formation (Arctic: 1.0 ng/L, Antarctic: 0.5 ng/L). Arctic and Antarctic sea ice exhibited THg concentration peaks in summer (0.25 ng/L) and spring (0.28 ng/L), respectively, governed by different snow Hg transmission pathways. Antarctic snow-ice formation facilitates Hg transfer to sea ice during spring, while in the Arctic, snow Hg is primarily moved through snowmelt. Overall, first-year sea ice acts as a buffer, receiving atmospheric Hg during ice growth and releasing it to the ocean in summer, influencing polar atmospheric and seawater Hg concentrations. Our model can assess climate change effects on polar Hg cycles and evaluate the Minamata Convention’s effectiveness for Arctic populations.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c05080</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Antarctic region ; Arctic region ; Atmosphere ; Biogeochemical Cycling ; Buffers ; Climate change ; Environmental assessment ; environmental science ; Ice environments ; Ice formation ; Mercury ; Oceans ; Polar environments ; Regional development ; Sea ice ; Seasonal variations ; Seawater ; Snow ; Snowmelt ; Spring ; Spring (season) ; Summer ; technology ; thermodynamics</subject><ispartof>Environmental science &amp; technology, 2023-10, Vol.57 (39), p.14589-14601</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 3, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-5ee85563fc8485e215331214eb39e6fd0d52de36ed859efbaf9f7ad10286d4083</citedby><cites>FETCH-LOGICAL-a371t-5ee85563fc8485e215331214eb39e6fd0d52de36ed859efbaf9f7ad10286d4083</cites><orcidid>0000-0001-5297-0859 ; 0000-0001-7770-3466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c05080$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c05080$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Huang, Shaojian</creatorcontrib><creatorcontrib>Wang, Feiyue</creatorcontrib><creatorcontrib>Yuan, Tengfei</creatorcontrib><creatorcontrib>Song, Zhengcheng</creatorcontrib><creatorcontrib>Wu, Peipei</creatorcontrib><creatorcontrib>Zhang, Yanxu</creatorcontrib><title>Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Sea ice (including overlying snow) is a dynamic interface between the atmosphere and the ocean, influencing the mercury (Hg) cycling in polar oceans. However, a large-scale and process-based model for the Hg cycle in the sea ice environment is lacking, hampering our understanding of regional Hg budget and critical processes. Here, we develop a comprehensive model for the Hg cycle at the ocean–sea ice–atmosphere interface with constraints from observational polar cryospheric data. We find that seasonal patterns of average total Hg (THg) in snow are governed by snow thermodynamics and deposition, peaking in springtime (Arctic: 5.9 ng/L; Antarctic: 5.3 ng/L) and minimizing during ice formation (Arctic: 1.0 ng/L, Antarctic: 0.5 ng/L). Arctic and Antarctic sea ice exhibited THg concentration peaks in summer (0.25 ng/L) and spring (0.28 ng/L), respectively, governed by different snow Hg transmission pathways. Antarctic snow-ice formation facilitates Hg transfer to sea ice during spring, while in the Arctic, snow Hg is primarily moved through snowmelt. Overall, first-year sea ice acts as a buffer, receiving atmospheric Hg during ice growth and releasing it to the ocean in summer, influencing polar atmospheric and seawater Hg concentrations. Our model can assess climate change effects on polar Hg cycles and evaluate the Minamata Convention’s effectiveness for Arctic populations.</description><subject>Antarctic region</subject><subject>Arctic region</subject><subject>Atmosphere</subject><subject>Biogeochemical Cycling</subject><subject>Buffers</subject><subject>Climate change</subject><subject>Environmental assessment</subject><subject>environmental science</subject><subject>Ice environments</subject><subject>Ice formation</subject><subject>Mercury</subject><subject>Oceans</subject><subject>Polar environments</subject><subject>Regional development</subject><subject>Sea ice</subject><subject>Seasonal variations</subject><subject>Seawater</subject><subject>Snow</subject><subject>Snowmelt</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Summer</subject><subject>technology</subject><subject>thermodynamics</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1Lw0AQxRdRsFbPXhe8CJJ2P7rJxlstVQstFVTwFrabWZuSbupuovS_d2PEgyCeBmZ-7w0zD6FzSgaUMDpU2g_A1wOuiSCSHKAeFYxEQgp6iHqEUB6lPH45RifebwghjBPZQ2ZR5VAW9hXXa8ALcLpxezzZ6xJwYb-aj6DwTAOe2vfCVXYLtr7GY3zTGAMOr6D-AOjIh6pUDo_rbeV3a3CAlc3xUoOyp-jIqNLD2Xfto-fb6dPkPpov72aT8TxSPKF1JACkEDE3Wo6kAEYF55TREax4CrHJSS5YDjyGXIoUzEqZ1CQqD_fLOB8RyfvosvPdueqtCe_ItoXXUJbKQtX4jAdHSVnC439RJgWLw3rSohe_0E3VOBsOCVQiBBcpTwI17CjtKu8dmGzniq1y-4ySrI0oCxFlrfo7oqC46hTt4MfyL_oTIeySPw</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Huang, Shaojian</creator><creator>Wang, Feiyue</creator><creator>Yuan, Tengfei</creator><creator>Song, Zhengcheng</creator><creator>Wu, Peipei</creator><creator>Zhang, Yanxu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5297-0859</orcidid><orcidid>https://orcid.org/0000-0001-7770-3466</orcidid></search><sort><creationdate>20231003</creationdate><title>Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean</title><author>Huang, Shaojian ; Wang, Feiyue ; Yuan, Tengfei ; Song, Zhengcheng ; Wu, Peipei ; Zhang, Yanxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-5ee85563fc8485e215331214eb39e6fd0d52de36ed859efbaf9f7ad10286d4083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antarctic region</topic><topic>Arctic region</topic><topic>Atmosphere</topic><topic>Biogeochemical Cycling</topic><topic>Buffers</topic><topic>Climate change</topic><topic>Environmental assessment</topic><topic>environmental science</topic><topic>Ice environments</topic><topic>Ice formation</topic><topic>Mercury</topic><topic>Oceans</topic><topic>Polar environments</topic><topic>Regional development</topic><topic>Sea ice</topic><topic>Seasonal variations</topic><topic>Seawater</topic><topic>Snow</topic><topic>Snowmelt</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Summer</topic><topic>technology</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Shaojian</creatorcontrib><creatorcontrib>Wang, Feiyue</creatorcontrib><creatorcontrib>Yuan, Tengfei</creatorcontrib><creatorcontrib>Song, Zhengcheng</creatorcontrib><creatorcontrib>Wu, Peipei</creatorcontrib><creatorcontrib>Zhang, Yanxu</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Shaojian</au><au>Wang, Feiyue</au><au>Yuan, Tengfei</au><au>Song, Zhengcheng</au><au>Wu, Peipei</au><au>Zhang, Yanxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-10-03</date><risdate>2023</risdate><volume>57</volume><issue>39</issue><spage>14589</spage><epage>14601</epage><pages>14589-14601</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Sea ice (including overlying snow) is a dynamic interface between the atmosphere and the ocean, influencing the mercury (Hg) cycling in polar oceans. However, a large-scale and process-based model for the Hg cycle in the sea ice environment is lacking, hampering our understanding of regional Hg budget and critical processes. Here, we develop a comprehensive model for the Hg cycle at the ocean–sea ice–atmosphere interface with constraints from observational polar cryospheric data. We find that seasonal patterns of average total Hg (THg) in snow are governed by snow thermodynamics and deposition, peaking in springtime (Arctic: 5.9 ng/L; Antarctic: 5.3 ng/L) and minimizing during ice formation (Arctic: 1.0 ng/L, Antarctic: 0.5 ng/L). Arctic and Antarctic sea ice exhibited THg concentration peaks in summer (0.25 ng/L) and spring (0.28 ng/L), respectively, governed by different snow Hg transmission pathways. Antarctic snow-ice formation facilitates Hg transfer to sea ice during spring, while in the Arctic, snow Hg is primarily moved through snowmelt. Overall, first-year sea ice acts as a buffer, receiving atmospheric Hg during ice growth and releasing it to the ocean in summer, influencing polar atmospheric and seawater Hg concentrations. Our model can assess climate change effects on polar Hg cycles and evaluate the Minamata Convention’s effectiveness for Arctic populations.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.3c05080</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5297-0859</orcidid><orcidid>https://orcid.org/0000-0001-7770-3466</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2023-10, Vol.57 (39), p.14589-14601
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2852633106
source ACS Publications
subjects Antarctic region
Arctic region
Atmosphere
Biogeochemical Cycling
Buffers
Climate change
Environmental assessment
environmental science
Ice environments
Ice formation
Mercury
Oceans
Polar environments
Regional development
Sea ice
Seasonal variations
Seawater
Snow
Snowmelt
Spring
Spring (season)
Summer
technology
thermodynamics
title Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Mercury%20Cycle%20in%20the%20Sea%20Ice%20Environment:%20A%20Buffer%20between%20the%20Polar%20Atmosphere%20and%20Ocean&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Huang,%20Shaojian&rft.date=2023-10-03&rft.volume=57&rft.issue=39&rft.spage=14589&rft.epage=14601&rft.pages=14589-14601&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c05080&rft_dat=%3Cproquest_cross%3E3153812736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875535937&rft_id=info:pmid/&rfr_iscdi=true