Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean
Sea ice (including overlying snow) is a dynamic interface between the atmosphere and the ocean, influencing the mercury (Hg) cycling in polar oceans. However, a large-scale and process-based model for the Hg cycle in the sea ice environment is lacking, hampering our understanding of regional Hg budg...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2023-10, Vol.57 (39), p.14589-14601 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14601 |
---|---|
container_issue | 39 |
container_start_page | 14589 |
container_title | Environmental science & technology |
container_volume | 57 |
creator | Huang, Shaojian Wang, Feiyue Yuan, Tengfei Song, Zhengcheng Wu, Peipei Zhang, Yanxu |
description | Sea ice (including overlying snow) is a dynamic interface between the atmosphere and the ocean, influencing the mercury (Hg) cycling in polar oceans. However, a large-scale and process-based model for the Hg cycle in the sea ice environment is lacking, hampering our understanding of regional Hg budget and critical processes. Here, we develop a comprehensive model for the Hg cycle at the ocean–sea ice–atmosphere interface with constraints from observational polar cryospheric data. We find that seasonal patterns of average total Hg (THg) in snow are governed by snow thermodynamics and deposition, peaking in springtime (Arctic: 5.9 ng/L; Antarctic: 5.3 ng/L) and minimizing during ice formation (Arctic: 1.0 ng/L, Antarctic: 0.5 ng/L). Arctic and Antarctic sea ice exhibited THg concentration peaks in summer (0.25 ng/L) and spring (0.28 ng/L), respectively, governed by different snow Hg transmission pathways. Antarctic snow-ice formation facilitates Hg transfer to sea ice during spring, while in the Arctic, snow Hg is primarily moved through snowmelt. Overall, first-year sea ice acts as a buffer, receiving atmospheric Hg during ice growth and releasing it to the ocean in summer, influencing polar atmospheric and seawater Hg concentrations. Our model can assess climate change effects on polar Hg cycles and evaluate the Minamata Convention’s effectiveness for Arctic populations. |
doi_str_mv | 10.1021/acs.est.3c05080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2852633106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153812736</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-5ee85563fc8485e215331214eb39e6fd0d52de36ed859efbaf9f7ad10286d4083</originalsourceid><addsrcrecordid>eNqFkc1Lw0AQxRdRsFbPXhe8CJJ2P7rJxlstVQstFVTwFrabWZuSbupuovS_d2PEgyCeBmZ-7w0zD6FzSgaUMDpU2g_A1wOuiSCSHKAeFYxEQgp6iHqEUB6lPH45RifebwghjBPZQ2ZR5VAW9hXXa8ALcLpxezzZ6xJwYb-aj6DwTAOe2vfCVXYLtr7GY3zTGAMOr6D-AOjIh6pUDo_rbeV3a3CAlc3xUoOyp-jIqNLD2Xfto-fb6dPkPpov72aT8TxSPKF1JACkEDE3Wo6kAEYF55TREax4CrHJSS5YDjyGXIoUzEqZ1CQqD_fLOB8RyfvosvPdueqtCe_ItoXXUJbKQtX4jAdHSVnC439RJgWLw3rSohe_0E3VOBsOCVQiBBcpTwI17CjtKu8dmGzniq1y-4ySrI0oCxFlrfo7oqC46hTt4MfyL_oTIeySPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875535937</pqid></control><display><type>article</type><title>Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean</title><source>ACS Publications</source><creator>Huang, Shaojian ; Wang, Feiyue ; Yuan, Tengfei ; Song, Zhengcheng ; Wu, Peipei ; Zhang, Yanxu</creator><creatorcontrib>Huang, Shaojian ; Wang, Feiyue ; Yuan, Tengfei ; Song, Zhengcheng ; Wu, Peipei ; Zhang, Yanxu</creatorcontrib><description>Sea ice (including overlying snow) is a dynamic interface between the atmosphere and the ocean, influencing the mercury (Hg) cycling in polar oceans. However, a large-scale and process-based model for the Hg cycle in the sea ice environment is lacking, hampering our understanding of regional Hg budget and critical processes. Here, we develop a comprehensive model for the Hg cycle at the ocean–sea ice–atmosphere interface with constraints from observational polar cryospheric data. We find that seasonal patterns of average total Hg (THg) in snow are governed by snow thermodynamics and deposition, peaking in springtime (Arctic: 5.9 ng/L; Antarctic: 5.3 ng/L) and minimizing during ice formation (Arctic: 1.0 ng/L, Antarctic: 0.5 ng/L). Arctic and Antarctic sea ice exhibited THg concentration peaks in summer (0.25 ng/L) and spring (0.28 ng/L), respectively, governed by different snow Hg transmission pathways. Antarctic snow-ice formation facilitates Hg transfer to sea ice during spring, while in the Arctic, snow Hg is primarily moved through snowmelt. Overall, first-year sea ice acts as a buffer, receiving atmospheric Hg during ice growth and releasing it to the ocean in summer, influencing polar atmospheric and seawater Hg concentrations. Our model can assess climate change effects on polar Hg cycles and evaluate the Minamata Convention’s effectiveness for Arctic populations.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c05080</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Antarctic region ; Arctic region ; Atmosphere ; Biogeochemical Cycling ; Buffers ; Climate change ; Environmental assessment ; environmental science ; Ice environments ; Ice formation ; Mercury ; Oceans ; Polar environments ; Regional development ; Sea ice ; Seasonal variations ; Seawater ; Snow ; Snowmelt ; Spring ; Spring (season) ; Summer ; technology ; thermodynamics</subject><ispartof>Environmental science & technology, 2023-10, Vol.57 (39), p.14589-14601</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 3, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-5ee85563fc8485e215331214eb39e6fd0d52de36ed859efbaf9f7ad10286d4083</citedby><cites>FETCH-LOGICAL-a371t-5ee85563fc8485e215331214eb39e6fd0d52de36ed859efbaf9f7ad10286d4083</cites><orcidid>0000-0001-5297-0859 ; 0000-0001-7770-3466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c05080$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c05080$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Huang, Shaojian</creatorcontrib><creatorcontrib>Wang, Feiyue</creatorcontrib><creatorcontrib>Yuan, Tengfei</creatorcontrib><creatorcontrib>Song, Zhengcheng</creatorcontrib><creatorcontrib>Wu, Peipei</creatorcontrib><creatorcontrib>Zhang, Yanxu</creatorcontrib><title>Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Sea ice (including overlying snow) is a dynamic interface between the atmosphere and the ocean, influencing the mercury (Hg) cycling in polar oceans. However, a large-scale and process-based model for the Hg cycle in the sea ice environment is lacking, hampering our understanding of regional Hg budget and critical processes. Here, we develop a comprehensive model for the Hg cycle at the ocean–sea ice–atmosphere interface with constraints from observational polar cryospheric data. We find that seasonal patterns of average total Hg (THg) in snow are governed by snow thermodynamics and deposition, peaking in springtime (Arctic: 5.9 ng/L; Antarctic: 5.3 ng/L) and minimizing during ice formation (Arctic: 1.0 ng/L, Antarctic: 0.5 ng/L). Arctic and Antarctic sea ice exhibited THg concentration peaks in summer (0.25 ng/L) and spring (0.28 ng/L), respectively, governed by different snow Hg transmission pathways. Antarctic snow-ice formation facilitates Hg transfer to sea ice during spring, while in the Arctic, snow Hg is primarily moved through snowmelt. Overall, first-year sea ice acts as a buffer, receiving atmospheric Hg during ice growth and releasing it to the ocean in summer, influencing polar atmospheric and seawater Hg concentrations. Our model can assess climate change effects on polar Hg cycles and evaluate the Minamata Convention’s effectiveness for Arctic populations.</description><subject>Antarctic region</subject><subject>Arctic region</subject><subject>Atmosphere</subject><subject>Biogeochemical Cycling</subject><subject>Buffers</subject><subject>Climate change</subject><subject>Environmental assessment</subject><subject>environmental science</subject><subject>Ice environments</subject><subject>Ice formation</subject><subject>Mercury</subject><subject>Oceans</subject><subject>Polar environments</subject><subject>Regional development</subject><subject>Sea ice</subject><subject>Seasonal variations</subject><subject>Seawater</subject><subject>Snow</subject><subject>Snowmelt</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Summer</subject><subject>technology</subject><subject>thermodynamics</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1Lw0AQxRdRsFbPXhe8CJJ2P7rJxlstVQstFVTwFrabWZuSbupuovS_d2PEgyCeBmZ-7w0zD6FzSgaUMDpU2g_A1wOuiSCSHKAeFYxEQgp6iHqEUB6lPH45RifebwghjBPZQ2ZR5VAW9hXXa8ALcLpxezzZ6xJwYb-aj6DwTAOe2vfCVXYLtr7GY3zTGAMOr6D-AOjIh6pUDo_rbeV3a3CAlc3xUoOyp-jIqNLD2Xfto-fb6dPkPpov72aT8TxSPKF1JACkEDE3Wo6kAEYF55TREax4CrHJSS5YDjyGXIoUzEqZ1CQqD_fLOB8RyfvosvPdueqtCe_ItoXXUJbKQtX4jAdHSVnC439RJgWLw3rSohe_0E3VOBsOCVQiBBcpTwI17CjtKu8dmGzniq1y-4ySrI0oCxFlrfo7oqC46hTt4MfyL_oTIeySPw</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Huang, Shaojian</creator><creator>Wang, Feiyue</creator><creator>Yuan, Tengfei</creator><creator>Song, Zhengcheng</creator><creator>Wu, Peipei</creator><creator>Zhang, Yanxu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5297-0859</orcidid><orcidid>https://orcid.org/0000-0001-7770-3466</orcidid></search><sort><creationdate>20231003</creationdate><title>Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean</title><author>Huang, Shaojian ; Wang, Feiyue ; Yuan, Tengfei ; Song, Zhengcheng ; Wu, Peipei ; Zhang, Yanxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-5ee85563fc8485e215331214eb39e6fd0d52de36ed859efbaf9f7ad10286d4083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antarctic region</topic><topic>Arctic region</topic><topic>Atmosphere</topic><topic>Biogeochemical Cycling</topic><topic>Buffers</topic><topic>Climate change</topic><topic>Environmental assessment</topic><topic>environmental science</topic><topic>Ice environments</topic><topic>Ice formation</topic><topic>Mercury</topic><topic>Oceans</topic><topic>Polar environments</topic><topic>Regional development</topic><topic>Sea ice</topic><topic>Seasonal variations</topic><topic>Seawater</topic><topic>Snow</topic><topic>Snowmelt</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Summer</topic><topic>technology</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Shaojian</creatorcontrib><creatorcontrib>Wang, Feiyue</creatorcontrib><creatorcontrib>Yuan, Tengfei</creatorcontrib><creatorcontrib>Song, Zhengcheng</creatorcontrib><creatorcontrib>Wu, Peipei</creatorcontrib><creatorcontrib>Zhang, Yanxu</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Shaojian</au><au>Wang, Feiyue</au><au>Yuan, Tengfei</au><au>Song, Zhengcheng</au><au>Wu, Peipei</au><au>Zhang, Yanxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-10-03</date><risdate>2023</risdate><volume>57</volume><issue>39</issue><spage>14589</spage><epage>14601</epage><pages>14589-14601</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Sea ice (including overlying snow) is a dynamic interface between the atmosphere and the ocean, influencing the mercury (Hg) cycling in polar oceans. However, a large-scale and process-based model for the Hg cycle in the sea ice environment is lacking, hampering our understanding of regional Hg budget and critical processes. Here, we develop a comprehensive model for the Hg cycle at the ocean–sea ice–atmosphere interface with constraints from observational polar cryospheric data. We find that seasonal patterns of average total Hg (THg) in snow are governed by snow thermodynamics and deposition, peaking in springtime (Arctic: 5.9 ng/L; Antarctic: 5.3 ng/L) and minimizing during ice formation (Arctic: 1.0 ng/L, Antarctic: 0.5 ng/L). Arctic and Antarctic sea ice exhibited THg concentration peaks in summer (0.25 ng/L) and spring (0.28 ng/L), respectively, governed by different snow Hg transmission pathways. Antarctic snow-ice formation facilitates Hg transfer to sea ice during spring, while in the Arctic, snow Hg is primarily moved through snowmelt. Overall, first-year sea ice acts as a buffer, receiving atmospheric Hg during ice growth and releasing it to the ocean in summer, influencing polar atmospheric and seawater Hg concentrations. Our model can assess climate change effects on polar Hg cycles and evaluate the Minamata Convention’s effectiveness for Arctic populations.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.3c05080</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5297-0859</orcidid><orcidid>https://orcid.org/0000-0001-7770-3466</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2023-10, Vol.57 (39), p.14589-14601 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2852633106 |
source | ACS Publications |
subjects | Antarctic region Arctic region Atmosphere Biogeochemical Cycling Buffers Climate change Environmental assessment environmental science Ice environments Ice formation Mercury Oceans Polar environments Regional development Sea ice Seasonal variations Seawater Snow Snowmelt Spring Spring (season) Summer technology thermodynamics |
title | Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Mercury%20Cycle%20in%20the%20Sea%20Ice%20Environment:%20A%20Buffer%20between%20the%20Polar%20Atmosphere%20and%20Ocean&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Huang,%20Shaojian&rft.date=2023-10-03&rft.volume=57&rft.issue=39&rft.spage=14589&rft.epage=14601&rft.pages=14589-14601&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c05080&rft_dat=%3Cproquest_cross%3E3153812736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875535937&rft_id=info:pmid/&rfr_iscdi=true |