Forced vibration of composite cylindrical helical rods

The dynamic behavior of composite cylindrical helical rods subjected to time-dependent loads is theoretically investigated in the Laplace domain. The governing equations for naturally twisted and curved spatial laminated rods obtained using Timoshenko beam theory are rewritten for cylindrical helica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanical sciences 2005-07, Vol.47 (7), p.998-1022
Hauptverfasser: Temel, Beytullah, Fırat Çalım, Faruk, Tütüncü, Naki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1022
container_issue 7
container_start_page 998
container_title International journal of mechanical sciences
container_volume 47
creator Temel, Beytullah
Fırat Çalım, Faruk
Tütüncü, Naki
description The dynamic behavior of composite cylindrical helical rods subjected to time-dependent loads is theoretically investigated in the Laplace domain. The governing equations for naturally twisted and curved spatial laminated rods obtained using Timoshenko beam theory are rewritten for cylindrical helical rods. The curvature of the rod axis, the anisotropy of the rod material, effect of the rotary inertia, axial and shear deformations are considered in the formulations. The material of the rod is assumed to be homogeneous, linear elastic and anisotropic. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method to calculate the dynamic stiffness matrix of the problem accurately. The solutions obtained are transformed to the time domain using an appropriate numerical inverse Laplace transform method. The free vibration is then taken into account as a special case of forced vibration. The results obtained in this study are found to be in a good agreement with those available in the literature.
doi_str_mv 10.1016/j.ijmecsci.2005.04.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28525321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020740305001141</els_id><sourcerecordid>28525321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-a7e1afec9a2f135b519ef67c496941bb906ceeb48e479e0b95a5273d9f34b1cc3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AURQdRsFb_gmTlLvHNV9LZKcWqUHCj62Hy8oIT0kydSQv996ZW167u5twL9zB2y6HgwMv7rvDdhjChLwSALkAVAPKMzfiiMrngpThnMwABeaVAXrKrlDoAXoGWM1auQkRqsr2voxt9GLLQZhg225D8SBkeej800aPrs0_qfzKGJl2zi9b1iW5-c84-Vk_vy5d8_fb8unxc5yiVHHNXEXctoXGi5VLXmhtqywqVKY3idW2gRKJaLUhVhqA22mlRyca0UtUcUc7Z3Wl3G8PXjtJoNz4h9b0bKOySFQsttBR8AssTiDGkFKm12-g3Lh4sB3vUZDv7p8keNVlQdtI0FR9ORZpu7D1FOxE0TE58JBxtE_x_E9-UrXSp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28525321</pqid></control><display><type>article</type><title>Forced vibration of composite cylindrical helical rods</title><source>Elsevier ScienceDirect Journals</source><creator>Temel, Beytullah ; Fırat Çalım, Faruk ; Tütüncü, Naki</creator><creatorcontrib>Temel, Beytullah ; Fırat Çalım, Faruk ; Tütüncü, Naki</creatorcontrib><description>The dynamic behavior of composite cylindrical helical rods subjected to time-dependent loads is theoretically investigated in the Laplace domain. The governing equations for naturally twisted and curved spatial laminated rods obtained using Timoshenko beam theory are rewritten for cylindrical helical rods. The curvature of the rod axis, the anisotropy of the rod material, effect of the rotary inertia, axial and shear deformations are considered in the formulations. The material of the rod is assumed to be homogeneous, linear elastic and anisotropic. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method to calculate the dynamic stiffness matrix of the problem accurately. The solutions obtained are transformed to the time domain using an appropriate numerical inverse Laplace transform method. The free vibration is then taken into account as a special case of forced vibration. The results obtained in this study are found to be in a good agreement with those available in the literature.</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/j.ijmecsci.2005.04.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Complementary functions method ; Composite materials ; Helical rods ; Inverse Laplace transforms</subject><ispartof>International journal of mechanical sciences, 2005-07, Vol.47 (7), p.998-1022</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-a7e1afec9a2f135b519ef67c496941bb906ceeb48e479e0b95a5273d9f34b1cc3</citedby><cites>FETCH-LOGICAL-c343t-a7e1afec9a2f135b519ef67c496941bb906ceeb48e479e0b95a5273d9f34b1cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020740305001141$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Temel, Beytullah</creatorcontrib><creatorcontrib>Fırat Çalım, Faruk</creatorcontrib><creatorcontrib>Tütüncü, Naki</creatorcontrib><title>Forced vibration of composite cylindrical helical rods</title><title>International journal of mechanical sciences</title><description>The dynamic behavior of composite cylindrical helical rods subjected to time-dependent loads is theoretically investigated in the Laplace domain. The governing equations for naturally twisted and curved spatial laminated rods obtained using Timoshenko beam theory are rewritten for cylindrical helical rods. The curvature of the rod axis, the anisotropy of the rod material, effect of the rotary inertia, axial and shear deformations are considered in the formulations. The material of the rod is assumed to be homogeneous, linear elastic and anisotropic. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method to calculate the dynamic stiffness matrix of the problem accurately. The solutions obtained are transformed to the time domain using an appropriate numerical inverse Laplace transform method. The free vibration is then taken into account as a special case of forced vibration. The results obtained in this study are found to be in a good agreement with those available in the literature.</description><subject>Complementary functions method</subject><subject>Composite materials</subject><subject>Helical rods</subject><subject>Inverse Laplace transforms</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AURQdRsFb_gmTlLvHNV9LZKcWqUHCj62Hy8oIT0kydSQv996ZW167u5twL9zB2y6HgwMv7rvDdhjChLwSALkAVAPKMzfiiMrngpThnMwABeaVAXrKrlDoAXoGWM1auQkRqsr2voxt9GLLQZhg225D8SBkeej800aPrs0_qfzKGJl2zi9b1iW5-c84-Vk_vy5d8_fb8unxc5yiVHHNXEXctoXGi5VLXmhtqywqVKY3idW2gRKJaLUhVhqA22mlRyca0UtUcUc7Z3Wl3G8PXjtJoNz4h9b0bKOySFQsttBR8AssTiDGkFKm12-g3Lh4sB3vUZDv7p8keNVlQdtI0FR9ORZpu7D1FOxE0TE58JBxtE_x_E9-UrXSp</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Temel, Beytullah</creator><creator>Fırat Çalım, Faruk</creator><creator>Tütüncü, Naki</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20050701</creationdate><title>Forced vibration of composite cylindrical helical rods</title><author>Temel, Beytullah ; Fırat Çalım, Faruk ; Tütüncü, Naki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-a7e1afec9a2f135b519ef67c496941bb906ceeb48e479e0b95a5273d9f34b1cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Complementary functions method</topic><topic>Composite materials</topic><topic>Helical rods</topic><topic>Inverse Laplace transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Temel, Beytullah</creatorcontrib><creatorcontrib>Fırat Çalım, Faruk</creatorcontrib><creatorcontrib>Tütüncü, Naki</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Temel, Beytullah</au><au>Fırat Çalım, Faruk</au><au>Tütüncü, Naki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forced vibration of composite cylindrical helical rods</atitle><jtitle>International journal of mechanical sciences</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>47</volume><issue>7</issue><spage>998</spage><epage>1022</epage><pages>998-1022</pages><issn>0020-7403</issn><eissn>1879-2162</eissn><abstract>The dynamic behavior of composite cylindrical helical rods subjected to time-dependent loads is theoretically investigated in the Laplace domain. The governing equations for naturally twisted and curved spatial laminated rods obtained using Timoshenko beam theory are rewritten for cylindrical helical rods. The curvature of the rod axis, the anisotropy of the rod material, effect of the rotary inertia, axial and shear deformations are considered in the formulations. The material of the rod is assumed to be homogeneous, linear elastic and anisotropic. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method to calculate the dynamic stiffness matrix of the problem accurately. The solutions obtained are transformed to the time domain using an appropriate numerical inverse Laplace transform method. The free vibration is then taken into account as a special case of forced vibration. The results obtained in this study are found to be in a good agreement with those available in the literature.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmecsci.2005.04.003</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7403
ispartof International journal of mechanical sciences, 2005-07, Vol.47 (7), p.998-1022
issn 0020-7403
1879-2162
language eng
recordid cdi_proquest_miscellaneous_28525321
source Elsevier ScienceDirect Journals
subjects Complementary functions method
Composite materials
Helical rods
Inverse Laplace transforms
title Forced vibration of composite cylindrical helical rods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forced%20vibration%20of%20composite%20cylindrical%20helical%20rods&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Temel,%20Beytullah&rft.date=2005-07-01&rft.volume=47&rft.issue=7&rft.spage=998&rft.epage=1022&rft.pages=998-1022&rft.issn=0020-7403&rft.eissn=1879-2162&rft_id=info:doi/10.1016/j.ijmecsci.2005.04.003&rft_dat=%3Cproquest_cross%3E28525321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28525321&rft_id=info:pmid/&rft_els_id=S0020740305001141&rfr_iscdi=true