Reciprocation, square root, inverse square root, and some elementary functions using small multipliers

This paper deals with the computation of reciprocals, square roots, inverse square roots, and some elementary functions using small tables, small multipliers, and, for some functions, a final "large" (almost full-length) multiplication. We propose a method, based on argument reduction and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 2000-07, Vol.49 (7), p.628-637
Hauptverfasser: Ercegovac, M.D., Lang, T., Muller, J.-M., Tisserand, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 637
container_issue 7
container_start_page 628
container_title IEEE transactions on computers
container_volume 49
creator Ercegovac, M.D.
Lang, T.
Muller, J.-M.
Tisserand, A.
description This paper deals with the computation of reciprocals, square roots, inverse square roots, and some elementary functions using small tables, small multipliers, and, for some functions, a final "large" (almost full-length) multiplication. We propose a method, based on argument reduction and series expansion, that allows fast evaluation of these functions in high precision. The strength of this method is that the same scheme allows the computation of all these functions. We estimate the delay, the size/number of tables, and the size/number of multipliers and compare with other related methods.
doi_str_mv 10.1109/12.863031
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28522900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>863031</ieee_id><sourcerecordid>28522900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-e427d18f0a0b37dd10e7326d7094238e727c5776572d3b70609ef7accced11513</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhhdRsFYPXj0tHkShqTO7STY5SvELCoLoOWw3E9mSj3Y3Efz3bkkR9OBpYOaZd-adYewcYY4I-S2KeZZKkHjAJpgkKsrzJD1kEwDMolzGcMxOvF8DQCogn7DqlYzduM7o3nbtjPvtoB1x13X9jNv2k5yn30ndltx3DXGqqaG21-6LV0Nrdv2eD962H9w3uq55M9S93dQ2aJyyo0rXns72ccreH-7fFk_R8uXxeXG3jEwssz6iWKgSswo0rKQqSwRSUqSlgjwWMiMllEmUShMlSrlSkEJOldLGGCoRE5RTdjXqBkvbgXxfNNYbqmvdUjf4QmSJEDlAAK__BTFVKFWGIgno5R903Q2uDTaKLMjJsOBu8M0IGdd576gqNs424TYFQrH7TIGiGD8T2IuRtUT0w-2L375yiGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885233261</pqid></control><display><type>article</type><title>Reciprocation, square root, inverse square root, and some elementary functions using small multipliers</title><source>IEEE Electronic Library (IEL)</source><creator>Ercegovac, M.D. ; Lang, T. ; Muller, J.-M. ; Tisserand, A.</creator><creatorcontrib>Ercegovac, M.D. ; Lang, T. ; Muller, J.-M. ; Tisserand, A.</creatorcontrib><description>This paper deals with the computation of reciprocals, square roots, inverse square roots, and some elementary functions using small tables, small multipliers, and, for some functions, a final "large" (almost full-length) multiplication. We propose a method, based on argument reduction and series expansion, that allows fast evaluation of these functions in high precision. The strength of this method is that the same scheme allows the computation of all these functions. We estimate the delay, the size/number of tables, and the size/number of multipliers and compare with other related methods.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/12.863031</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computation ; Computer science ; Computer Society ; Delay estimation ; Graphics ; Inverse ; Linear approximation ; Mathematical analysis ; Mathematical models ; Multipliers ; Polynomials ; Reciprocation ; Roots ; Table lookup ; Tables ; Taylor series ; Very large scale integration</subject><ispartof>IEEE transactions on computers, 2000-07, Vol.49 (7), p.628-637</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-e427d18f0a0b37dd10e7326d7094238e727c5776572d3b70609ef7accced11513</citedby><cites>FETCH-LOGICAL-c438t-e427d18f0a0b37dd10e7326d7094238e727c5776572d3b70609ef7accced11513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/863031$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/863031$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ercegovac, M.D.</creatorcontrib><creatorcontrib>Lang, T.</creatorcontrib><creatorcontrib>Muller, J.-M.</creatorcontrib><creatorcontrib>Tisserand, A.</creatorcontrib><title>Reciprocation, square root, inverse square root, and some elementary functions using small multipliers</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>This paper deals with the computation of reciprocals, square roots, inverse square roots, and some elementary functions using small tables, small multipliers, and, for some functions, a final "large" (almost full-length) multiplication. We propose a method, based on argument reduction and series expansion, that allows fast evaluation of these functions in high precision. The strength of this method is that the same scheme allows the computation of all these functions. We estimate the delay, the size/number of tables, and the size/number of multipliers and compare with other related methods.</description><subject>Computation</subject><subject>Computer science</subject><subject>Computer Society</subject><subject>Delay estimation</subject><subject>Graphics</subject><subject>Inverse</subject><subject>Linear approximation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multipliers</subject><subject>Polynomials</subject><subject>Reciprocation</subject><subject>Roots</subject><subject>Table lookup</subject><subject>Tables</subject><subject>Taylor series</subject><subject>Very large scale integration</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1Lw0AQhhdRsFYPXj0tHkShqTO7STY5SvELCoLoOWw3E9mSj3Y3Efz3bkkR9OBpYOaZd-adYewcYY4I-S2KeZZKkHjAJpgkKsrzJD1kEwDMolzGcMxOvF8DQCogn7DqlYzduM7o3nbtjPvtoB1x13X9jNv2k5yn30ndltx3DXGqqaG21-6LV0Nrdv2eD962H9w3uq55M9S93dQ2aJyyo0rXns72ccreH-7fFk_R8uXxeXG3jEwssz6iWKgSswo0rKQqSwRSUqSlgjwWMiMllEmUShMlSrlSkEJOldLGGCoRE5RTdjXqBkvbgXxfNNYbqmvdUjf4QmSJEDlAAK__BTFVKFWGIgno5R903Q2uDTaKLMjJsOBu8M0IGdd576gqNs424TYFQrH7TIGiGD8T2IuRtUT0w-2L375yiGE</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>Ercegovac, M.D.</creator><creator>Lang, T.</creator><creator>Muller, J.-M.</creator><creator>Tisserand, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000701</creationdate><title>Reciprocation, square root, inverse square root, and some elementary functions using small multipliers</title><author>Ercegovac, M.D. ; Lang, T. ; Muller, J.-M. ; Tisserand, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-e427d18f0a0b37dd10e7326d7094238e727c5776572d3b70609ef7accced11513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computation</topic><topic>Computer science</topic><topic>Computer Society</topic><topic>Delay estimation</topic><topic>Graphics</topic><topic>Inverse</topic><topic>Linear approximation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multipliers</topic><topic>Polynomials</topic><topic>Reciprocation</topic><topic>Roots</topic><topic>Table lookup</topic><topic>Tables</topic><topic>Taylor series</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ercegovac, M.D.</creatorcontrib><creatorcontrib>Lang, T.</creatorcontrib><creatorcontrib>Muller, J.-M.</creatorcontrib><creatorcontrib>Tisserand, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ercegovac, M.D.</au><au>Lang, T.</au><au>Muller, J.-M.</au><au>Tisserand, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reciprocation, square root, inverse square root, and some elementary functions using small multipliers</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2000-07-01</date><risdate>2000</risdate><volume>49</volume><issue>7</issue><spage>628</spage><epage>637</epage><pages>628-637</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>This paper deals with the computation of reciprocals, square roots, inverse square roots, and some elementary functions using small tables, small multipliers, and, for some functions, a final "large" (almost full-length) multiplication. We propose a method, based on argument reduction and series expansion, that allows fast evaluation of these functions in high precision. The strength of this method is that the same scheme allows the computation of all these functions. We estimate the delay, the size/number of tables, and the size/number of multipliers and compare with other related methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/12.863031</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 2000-07, Vol.49 (7), p.628-637
issn 0018-9340
1557-9956
language eng
recordid cdi_proquest_miscellaneous_28522900
source IEEE Electronic Library (IEL)
subjects Computation
Computer science
Computer Society
Delay estimation
Graphics
Inverse
Linear approximation
Mathematical analysis
Mathematical models
Multipliers
Polynomials
Reciprocation
Roots
Table lookup
Tables
Taylor series
Very large scale integration
title Reciprocation, square root, inverse square root, and some elementary functions using small multipliers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reciprocation,%20square%20root,%20inverse%20square%20root,%20and%20some%20elementary%20functions%20using%20small%20multipliers&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Ercegovac,%20M.D.&rft.date=2000-07-01&rft.volume=49&rft.issue=7&rft.spage=628&rft.epage=637&rft.pages=628-637&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/12.863031&rft_dat=%3Cproquest_RIE%3E28522900%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885233261&rft_id=info:pmid/&rft_ieee_id=863031&rfr_iscdi=true