Cooling behaviour of particle filled polypropylene during injection moulding process

The effects of thermal properties of various fillers (magnetite, barite, copper, talc, glass fibres and strontium ferrite) in various proportions on the cooling behaviour of polypropylene matrix composites are investigated in an injection moulding process. A thermocouple in the cavity of the mould r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2005-01, Vol.36 (3), p.345-351
Hauptverfasser: Weidenfeller, Bernd, Höfer, Michael, Schilling, Frank R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 351
container_issue 3
container_start_page 345
container_title Composites. Part A, Applied science and manufacturing
container_volume 36
creator Weidenfeller, Bernd
Höfer, Michael
Schilling, Frank R.
description The effects of thermal properties of various fillers (magnetite, barite, copper, talc, glass fibres and strontium ferrite) in various proportions on the cooling behaviour of polypropylene matrix composites are investigated in an injection moulding process. A thermocouple in the cavity of the mould records the temperatures at the surface of the composite during injection moulding. From the slope of the cooling curves the thermal diffusivities of the composites are estimated and compared with thermal diffusivities at room temperature and elevated temperatures measured with a transient technique. The cooling curves show different merging sections affected by the after pressure, the diffusivity of the composite and the diffusivity of polypropylene matrix. The cooling behaviour depends on the anisotropic thermal diffusivity of the used composite, which is caused by the alignment of filler material due to the injection moulding process and the interconnectivity of the filler particles. The thermal diffusivity shows the highest value for 30 vol% talc filled polypropylene, whereas the shortest cooling time was found for 35 vol% copper filled polypropylene. The knowledge of the systematic variation of thermal transport properties of composites due to different filler material and filler proportions allows to optimize the mould process and to customize the heat flow properties. Furthermore, the strongly anisotropic thermal transport properties of talc filled polypropylene allow the design of composites with a predefined maximum heat flow capability to transport heat in a preferred direction.
doi_str_mv 10.1016/j.compositesa.2004.07.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28520951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X04001897</els_id><sourcerecordid>28520951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-56372e72b33a47a1a6061fd1aff5c17b4a00a2117af0060950bb0bac2d9cd1863</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhosouH78h3rQW-sk_Uh7lMUvELwoeAvTdKJZsk1N2oX992bZBT16mjA877zkSZIrBjkDVt-ucuXWowtmooA5ByhzEDkAP0oWrBFNVjUlHMd3UbVZU1Qfp8lZCCsAKIqWLZK3pXPWDJ9pR1-4MW72qdPpiH4yylKqjbXUp6Oz29G7cWtpoLSf_S5hhhWpybghXbvZ9rtVZBSFcJGcaLSBLg_zPHl_uH9bPmUvr4_Py7uXTJWsnbKqLgQnwbuiwFIgwxpqpnuGWleKia5EAOSMCdQANbQVdB10qHjfqp41dXGe3Ozvxt7vmcIk1yYoshYHcnOQvKl4jLEItntQeReCJy1Hb9bot5KB3HmUK_nHo9x5lCBk9Biz14cSDAqt9jgoE34P1KWoedtGbrnnKP54Y8jLoAwNinrjoyfZO_OPth_dYZEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28520951</pqid></control><display><type>article</type><title>Cooling behaviour of particle filled polypropylene during injection moulding process</title><source>Access via ScienceDirect (Elsevier)</source><creator>Weidenfeller, Bernd ; Höfer, Michael ; Schilling, Frank R.</creator><creatorcontrib>Weidenfeller, Bernd ; Höfer, Michael ; Schilling, Frank R.</creatorcontrib><description>The effects of thermal properties of various fillers (magnetite, barite, copper, talc, glass fibres and strontium ferrite) in various proportions on the cooling behaviour of polypropylene matrix composites are investigated in an injection moulding process. A thermocouple in the cavity of the mould records the temperatures at the surface of the composite during injection moulding. From the slope of the cooling curves the thermal diffusivities of the composites are estimated and compared with thermal diffusivities at room temperature and elevated temperatures measured with a transient technique. The cooling curves show different merging sections affected by the after pressure, the diffusivity of the composite and the diffusivity of polypropylene matrix. The cooling behaviour depends on the anisotropic thermal diffusivity of the used composite, which is caused by the alignment of filler material due to the injection moulding process and the interconnectivity of the filler particles. The thermal diffusivity shows the highest value for 30 vol% talc filled polypropylene, whereas the shortest cooling time was found for 35 vol% copper filled polypropylene. The knowledge of the systematic variation of thermal transport properties of composites due to different filler material and filler proportions allows to optimize the mould process and to customize the heat flow properties. Furthermore, the strongly anisotropic thermal transport properties of talc filled polypropylene allow the design of composites with a predefined maximum heat flow capability to transport heat in a preferred direction.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2004.07.002</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A. Polymer–matrix composites (PMCs) ; Applied sciences ; B. Thermal properties ; Composites ; E. Injection moulding ; Exact sciences and technology ; Forms of application and semi-finished materials ; Particulate filler ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2005-01, Vol.36 (3), p.345-351</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-56372e72b33a47a1a6061fd1aff5c17b4a00a2117af0060950bb0bac2d9cd1863</citedby><cites>FETCH-LOGICAL-c419t-56372e72b33a47a1a6061fd1aff5c17b4a00a2117af0060950bb0bac2d9cd1863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesa.2004.07.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16476299$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Weidenfeller, Bernd</creatorcontrib><creatorcontrib>Höfer, Michael</creatorcontrib><creatorcontrib>Schilling, Frank R.</creatorcontrib><title>Cooling behaviour of particle filled polypropylene during injection moulding process</title><title>Composites. Part A, Applied science and manufacturing</title><description>The effects of thermal properties of various fillers (magnetite, barite, copper, talc, glass fibres and strontium ferrite) in various proportions on the cooling behaviour of polypropylene matrix composites are investigated in an injection moulding process. A thermocouple in the cavity of the mould records the temperatures at the surface of the composite during injection moulding. From the slope of the cooling curves the thermal diffusivities of the composites are estimated and compared with thermal diffusivities at room temperature and elevated temperatures measured with a transient technique. The cooling curves show different merging sections affected by the after pressure, the diffusivity of the composite and the diffusivity of polypropylene matrix. The cooling behaviour depends on the anisotropic thermal diffusivity of the used composite, which is caused by the alignment of filler material due to the injection moulding process and the interconnectivity of the filler particles. The thermal diffusivity shows the highest value for 30 vol% talc filled polypropylene, whereas the shortest cooling time was found for 35 vol% copper filled polypropylene. The knowledge of the systematic variation of thermal transport properties of composites due to different filler material and filler proportions allows to optimize the mould process and to customize the heat flow properties. Furthermore, the strongly anisotropic thermal transport properties of talc filled polypropylene allow the design of composites with a predefined maximum heat flow capability to transport heat in a preferred direction.</description><subject>A. Polymer–matrix composites (PMCs)</subject><subject>Applied sciences</subject><subject>B. Thermal properties</subject><subject>Composites</subject><subject>E. Injection moulding</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Particulate filler</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhosouH78h3rQW-sk_Uh7lMUvELwoeAvTdKJZsk1N2oX992bZBT16mjA877zkSZIrBjkDVt-ucuXWowtmooA5ByhzEDkAP0oWrBFNVjUlHMd3UbVZU1Qfp8lZCCsAKIqWLZK3pXPWDJ9pR1-4MW72qdPpiH4yylKqjbXUp6Oz29G7cWtpoLSf_S5hhhWpybghXbvZ9rtVZBSFcJGcaLSBLg_zPHl_uH9bPmUvr4_Py7uXTJWsnbKqLgQnwbuiwFIgwxpqpnuGWleKia5EAOSMCdQANbQVdB10qHjfqp41dXGe3Ozvxt7vmcIk1yYoshYHcnOQvKl4jLEItntQeReCJy1Hb9bot5KB3HmUK_nHo9x5lCBk9Biz14cSDAqt9jgoE34P1KWoedtGbrnnKP54Y8jLoAwNinrjoyfZO_OPth_dYZEY</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Weidenfeller, Bernd</creator><creator>Höfer, Michael</creator><creator>Schilling, Frank R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050101</creationdate><title>Cooling behaviour of particle filled polypropylene during injection moulding process</title><author>Weidenfeller, Bernd ; Höfer, Michael ; Schilling, Frank R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-56372e72b33a47a1a6061fd1aff5c17b4a00a2117af0060950bb0bac2d9cd1863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>A. Polymer–matrix composites (PMCs)</topic><topic>Applied sciences</topic><topic>B. Thermal properties</topic><topic>Composites</topic><topic>E. Injection moulding</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Particulate filler</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weidenfeller, Bernd</creatorcontrib><creatorcontrib>Höfer, Michael</creatorcontrib><creatorcontrib>Schilling, Frank R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weidenfeller, Bernd</au><au>Höfer, Michael</au><au>Schilling, Frank R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooling behaviour of particle filled polypropylene during injection moulding process</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>36</volume><issue>3</issue><spage>345</spage><epage>351</epage><pages>345-351</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>The effects of thermal properties of various fillers (magnetite, barite, copper, talc, glass fibres and strontium ferrite) in various proportions on the cooling behaviour of polypropylene matrix composites are investigated in an injection moulding process. A thermocouple in the cavity of the mould records the temperatures at the surface of the composite during injection moulding. From the slope of the cooling curves the thermal diffusivities of the composites are estimated and compared with thermal diffusivities at room temperature and elevated temperatures measured with a transient technique. The cooling curves show different merging sections affected by the after pressure, the diffusivity of the composite and the diffusivity of polypropylene matrix. The cooling behaviour depends on the anisotropic thermal diffusivity of the used composite, which is caused by the alignment of filler material due to the injection moulding process and the interconnectivity of the filler particles. The thermal diffusivity shows the highest value for 30 vol% talc filled polypropylene, whereas the shortest cooling time was found for 35 vol% copper filled polypropylene. The knowledge of the systematic variation of thermal transport properties of composites due to different filler material and filler proportions allows to optimize the mould process and to customize the heat flow properties. Furthermore, the strongly anisotropic thermal transport properties of talc filled polypropylene allow the design of composites with a predefined maximum heat flow capability to transport heat in a preferred direction.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2004.07.002</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-835X
ispartof Composites. Part A, Applied science and manufacturing, 2005-01, Vol.36 (3), p.345-351
issn 1359-835X
1878-5840
language eng
recordid cdi_proquest_miscellaneous_28520951
source Access via ScienceDirect (Elsevier)
subjects A. Polymer–matrix composites (PMCs)
Applied sciences
B. Thermal properties
Composites
E. Injection moulding
Exact sciences and technology
Forms of application and semi-finished materials
Particulate filler
Polymer industry, paints, wood
Technology of polymers
title Cooling behaviour of particle filled polypropylene during injection moulding process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooling%20behaviour%20of%20particle%20filled%20polypropylene%20during%20injection%20moulding%20process&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Weidenfeller,%20Bernd&rft.date=2005-01-01&rft.volume=36&rft.issue=3&rft.spage=345&rft.epage=351&rft.pages=345-351&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2004.07.002&rft_dat=%3Cproquest_cross%3E28520951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28520951&rft_id=info:pmid/&rft_els_id=S1359835X04001897&rfr_iscdi=true